深度学习loss总结(二)

       对于目前深度学习主流任务学习,loss的设置至关重要。下面就不同任务的loss设置进行如下总结:

(1)目标检测

2D/3D目标检测中的 Loss(损失函数)是训练模型时优化目标的核心,通常包括位置、类别、尺寸、方向等多个方面。以下是目前 常见的 2D 和 3D 目标检测 Loss 分类与总结


🔷 一、2D 目标检测常见 Loss

2D 目标检测常见于图像(如 COCO、VOC),其 Loss 主要分为以下三类:

1. 分类损失(Classification Loss)
  • Cross Entropy Loss:最常用,如 Faster R-CNN、YOLOv3。

  • Focal Loss:用于处理前景/背景不均衡,如 RetinaNet。

2. 边界框回归损失(Bounding Box Regression Loss)
  • Smooth L1 Loss / Huber Loss:常用于 R-CNN 系列。

  • IoU Loss:直接优化 IoU,稳定性更好。

  • GIoU / DIoU / CIoU Loss(用于 YOLOv4/v5 等):

    • GIoU: Generalized IoU,考虑重叠与包围。

    • DIoU: Distance IoU,考虑中心距离。

    • CIoU: Complete IoU,综合中心、面积和长宽比。

3. 辅助任务损失
  • Objectness Loss:YOLO 系列判断该区域是否有目标。

  • Center-ness Loss:FCOS 中判断中心点可信度。

  • Heatmap Loss(如 CornerNet, CenterNet):

    • 用高斯热图回归目标中心点,常用 MSE 或 focal loss


🔷 二、3D 目标检测常见 Loss

3D 检测用于点云(如 KITTI、nuScenes、Waymo),损失函数更加复杂,涵盖了空间维度、方向等:

1. 分类损失
  • 同 2D 检测,使用 CrossEntropy/Focal Loss。

  • 在 anchor-based 方法中用于前背景分类。

2. 3D 边界框回归损失
  • 通常为多项组合,包括中心位置、大小、方向等:

➤ 位置损失:
  • L1 / Smooth L1:对中心点 (x,y,z)(x, y, z)。

  • Center Distance Loss:点云中心与GT中心的距离。

➤ 尺寸损失:
  • 对 w,h,lw, h, l 使用 L1/Smooth L1。

➤ 朝向损失(方向角):
  • 角度回归 loss:L1 / Smooth L1。

  • 角度分类 loss:方向离散为多个 bin,使用分类损失。

  • Sin-Cos 回归 loss:使用 sin⁡(θ),cos⁡(θ)\sin(\theta), \cos(\theta) 规避周期性问题。

3. IoU类损失
  • 3D IoU Loss(较难优化但直观):如 PointRCNN。

  • BEV IoU Loss(Bird's Eye View):简化空间问题。

4. 关键点 / 热力图损失
  • Heatmap Loss(如 CenterPoint, PV-RCNN)用于预测中心点。

    • 通常为 Gaussian Focal Loss

  • Offset Loss:预测热图中心点到真实中心点的偏移量。

5. 方向不变性损失
  • Corner Loss(如 Frustum-PointNet):

    • 通过角点预测反推旋转和平移,更鲁棒。

  • Chamfer Distance(点云匹配):在 PointNet++ 等方法中。


🔷 三、检测 Loss 组合示意

模型 分类 Loss 回归 Loss 特殊项
Faster R-CNN Cross Entropy Smooth L1 -
YOLOv5 BCE / Focal CIoU Loss Objectness Loss
RetinaNet Focal Loss Smooth L1 -
CenterNet Heatmap Loss Offset + Size (L1) -
PointRCNN Focal + IoU 3D Box Regression + Corner Loss Direction Class
PV-RCNN Heatmap + CE L1 + 3D IoU + Sin-Cos Angle Loss RoI Pool + BEV Match
CenterPoint Heatmap + CE Offset + Size + Direction (multi-part) Gaussian Focal + Direction Bin

✅ 总结:选择检测 Loss 的核心要点

目标 推荐 Loss 类型
二分类 / 多分类
<think>我们正在处理用户关于深度学习训练过程中损失函数可视化的问题。用户希望了解如何绘制LOSS曲线,用于模型调优或结果可视化。根据提供的引用,我们可以总结出几种常见的方法。方法1:使用matplotlib手动绘制-在训练过程中记录训练损失和测试损失(或其他指标)到列表-训练结束后,使用matplotlib绘制折线图方法2:使用TensorBoard(深度学习框架如TensorFlow、PyTorch的可视化工具)-在训练过程中使用特定的函数(如add_scalar)将损失值写入日志-启动TensorBoard服务并打开网页查看实时曲线由于用户提到PyTorch(引用1)和Tensorboard(引用3),以及matplotlib(引用2),我们将分别介绍这两种主要方法。步骤:1.记录损失值:在训练循环中,每个epoch或每个batch后记录损失值。2.绘制:使用matplotlib绘制或使用TensorBoard实时查看。我们将分别给出两种方法的示例代码。注意:用户可能使用不同的深度学习框架,但问题中提到了PyTorch(引用1)和Tensorboard(引用3),所以我们以PyTorch为例。方法一:使用matplotlib绘制-在训练过程中收集损失值-训练结束后绘制方法:使用TensorBoard(PyTorch中通过torch.utils.tensorboard实现)-安装TensorBoard:`pip installtensorboard`-在代码中创建SummaryWriter,并添加标量(损失值)-启动TensorBoard服务下面分别给出两种方法的代码示例:</think>### 深度学习损失函数可视化方法 在深度学习训练中,可视化损失函数(LOSS)曲线是分析模型性能的关键手段。以下是两种主流实现方法,结合代码示例说明: --- #### **方法1:Matplotlib 手动绘制** **核心步骤**: 1. **记录损失值**:训练过程中存储每个 epoch 的损失 2. **绘制曲线**:训练结束后用 `matplotlib` 可视化 ```python import matplotlib.pyplot as plt # 训练循环中记录损失(示例) train_losses = [] # 存储训练损失 val_losses = [] # 存储验证损失 for epoch in range(epochs): # 训练模型并计算损失 train_loss = model_train_step(...) val_loss = model_val_step(...) # 记录损失值 train_losses.append(train_loss) val_losses.append(val_loss) # 绘制双曲线 plt.figure(figsize=(10, 5)) plt.plot(train_losses, label='训练损失', color='blue') plt.plot(val_losses, label='验证损失', color='red') plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('训练与验证损失曲线') plt.legend() plt.grid(True) plt.savefig('loss_curve.png') # 保存图像 plt.show() ``` **关键点**: - 需显式存储损失值列表 - 支持自定义曲线样式(颜色、标签等) - 适合简单场景或定制化分析[^1][^2] --- #### **方法2:TensorBoard 实时可视化** **核心步骤**: 1. **集成回调函数**:使用 PyTorch/TensorFlow 的 TensorBoard 工具 2. **实时监控**:训练过程中动态更新曲线 **PyTorch 示例**: ```python from torch.utils.tensorboard import SummaryWriter # 创建日志记录器 writer = SummaryWriter('logs/') for epoch in range(epochs): train_loss = ... # 计算训练损失 val_loss = ... # 计算验证损失 # 记录标量数据 writer.add_scalar('Loss/train', train_loss, epoch) writer.add_scalar('Loss/val', val_loss, epoch) # 关闭记录器 writer.close() ``` **使用流程**: 1. 启动 TensorBoard 服务: ```bash tensorboard --logdir=logs/ ``` 2. 浏览器访问 `http://localhost:6006` 查看实时曲线 **优势**: - 支持动态缩放、多曲线对比 - 可同时可视化精度、直方图等指标[^3] --- ### **选择建议** | 方法 | 适用场景 | 特点 | |---------------|---------------------------------|--------------------------| | Matplotlib | 快速分析/轻量级任务 | 简单灵活,无需额外服务 | | TensorBoard | 复杂模型/长期训练/团队协作 | 实时监控,集成多维度分析 | > **调优提示**:当验证损失持续高于训练损失时,可能出现过拟合,需引入正则化或早停策略[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值