公众号:dify实验室
基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。
大家好,我是dify实验室的阿亚。最近团队里的技术大佬们在review代码和设计时,总有个声音在抱怨:“每次画UML图都好麻烦!” 手绘吧,效率低还不好改;用PlantUML这种代码生成工具吧,语法又不是人人都会,时不时就写错了。
于是,一个新的想法产生了:能不能用Dify搞个应用,让大家用“说人话”的方式,就能快速生成规范、漂亮的UML图?本篇文章就来记录下我从屡屡碰壁到最终实现一个高成功率Demo的完整踩坑过程。
一、最初的挑战:让UML图“听懂人话”,告别手绘烦恼
想象一下,你正在构思一个复杂的系统,需要快速绘制序列图、类图来和同事对齐思路。传统的拖拽式工具不仅打断心流,版本管理更是噩梦。我们的目标很明确:通过AI,让工程师只需输入一段自然语言描述,比如“画一个用户登录的序列图,用户向登录服务发起请求,服务校验数据库后返回结果”,系统就能自动生成UML图。但问题来了:AI如何才能准确理解我们的意图,并转换成100%正确的PlantUML代码呢?
二、弯路与启示:一次惨痛的失败尝试
在找到最佳方案前,我理所当然地走上了一条“捷径”,结果摔了个大跟头。这里分享一下这个典型的“弯路”,希望能帮大家避坑。
弯路一:天真地拥抱在线服务
我最开始的想法很简单:网上不是有很多免费的PlantUML在线渲染服务吗?我只需要搭建一个Dify工作流,让大模型生成PlantUML代码,然后调用这些在线服务的API,把图片返回来不就行了?
说干就干,结果现实给了我一记响亮的耳光。
- 极不稳定
这些公共服务要么是网络连接时好时坏,要么就是有请求频率限制,自动化流程跑着跑着就卡住了。
- 兼容性差
我发现大模型生成的代码,在本地用PlantUML官方工具能跑通,但放到某些在线服务上就是会报错。似乎每个在线服务对语法的“容忍度”或支持的“方言”都略有不同。
- 成功率低
大模型对这些特定在线服务的“癖好”一无所知,导致生成的代码错误频发,成功率低得可怜,整个体验极差。
这次尝试让我深刻明白,把核心流程建立在不可控的第三方服务上,简直是在“沙滩上盖楼”,太不靠谱了。
三、真正的突破口:把服务掌握在自己手里
在反思之后,我找到了真正的突破口——放弃幻想,本地部署!
说白了,就是我们不再依赖那个“时灵时不灵”的外部API,而是自己在本地搭建一个稳定、可靠、完全受我们控制的PlantUML服务。这个方案的核心就是利用Docker,过程出奇的简单:
- 第一步:安装Docker
这是基础,如果你的电脑还没有,去官网下一个装上就行。
- 第二步:拉取PlantUML官方镜像
在命令行里敲下面这行代码,把官方服务器“请”到你的电脑里。docker pull plantuml/plantuml-server
- 第三步:启动服务
再敲一行命令,让它在后台跑起来,并把端口映射出来(这里我用的是8001)。docker run -d -p 8001:8080 plantuml/plantuml-server
当我在浏览器访问 http://localhost:8001
看到服务界面时,我知道,这次稳了!这个方案不仅速度飞快、稳定可靠,还解决了设计文档的保密问题,成为了我们的最终选择。
四、Dify工作流再进化:我的“王牌”绘图生成器
有了坚实的本地服务作为后盾,我开始对Dify工作流进行脱胎换骨的改造。
我的工作流通过API接口,实现了从“自然语言”到“UML图像”的全自动化:
- 开始节点
接收用户的需求,比如图表描述(
userinput
)、图表类型(diagramtype
)等。明确的类型指定能极大帮助大模型聚焦。 - 大模型(LLM)节点
这是工作流的“大脑”。我投入了大量精力进行提示词工程,反复分析失败案例,在Prompt里加入了严格的规则和丰富的示例,强制模型输出高精度的、纯净的PlantUML代码。
- HTTP请求节点(编码+获取)
这一步负责调用我们本地部署的服务。先将代码编码,再请求生成图片。由于是本地调用(通过
host.docker.internal:8001
访问),响应速度极快,延迟几乎可以忽略不计。
通过这套流程,我们把PlantUML代码的生成成功率,从之前不到50%的“惨状”,一举提升到了95%以上!来看看最终的效果。
五、利其器善其事:我的三大“逆袭”心得
工欲善其事,必先利其器。在这套“王牌”方案中,有几个关键点至关重要。
- 本地部署是王道
:这是稳定性和可靠性的基石。它彻底解决了网络延迟、服务限制和兼容性问题,是成功率从不及格到优秀的关键。
- 极致的提示词工程
:这是提升大模型表现的核心。不要指望模型能“猜”对你的心思,你必须像一个严厉的老师一样,在提示词里把规则、格式、禁忌都讲得清清楚楚。
- 模型的选择与参数调优
:选择逻辑推理能力强、对结构化输出更友好的大模型。同时,使用较低的
temperature
值(比如0.01或0.1),能让模型更专注于准确性,而不是“创造性”。
结语
回顾整个过程,从最初依赖在线服务的屡屡碰壁,到最终找到“本地部署+精调工作流”的高成功率Demo。希望今天的分享,能对正在探索AI应用边界的你有所启发。我是阿亚,我们下次再聊!