公众号:dify实验室
基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。
各位dify实验室的工程师们,我是超人阿亚。
在构建高级AI应用时,实时联网搜索能力是不可或缺的一环。然而,Dify官方提供的搜索插件往往伴随着网络限制或高昂的API成本,这在一定程度上制约了我们探索的边界。
今天,我将向大家展示一个高效且极具成本效益的解决方案:我们将通过Dify的HTTP请求节点,结合腾讯元器平台,构建一个私有化、免费且拥有高达1亿Token调用额度的联网搜索工具。这不仅能解决依赖问题,更能赋予你的Agent强大的实时信息获取能力。
架构原理解析
本次方案的核心思想是“服务代理与工具化封装”。
我们将利用腾讯元器作为外部搜索服务的提供者。通过其工作流插件功能,我们可以将复杂的搜索逻辑封装成一个标准的API接口。随后,在Dify中,我们使用HTTP请求节点作为客户端,精确调用这个接口。最终,我们将整个HTTP调用流程发布为一个Dify工具,使其可以被任何Agent或工作流无缝、模块化地调用。
这种架构的优势在于:
- 解耦
将搜索服务的实现与Dify应用逻辑分离,便于维护和升级。
- 成本控制
完全利用免费平台资源,实现零API成本。
- 私有化
工具由你亲自构建和控制,数据链路清晰,安全性更高。
前置技术栈准备
在开始实践之前,请确保以下环境与凭证准备就绪:
- 腾讯元器平台访问权限
注册并登录,这是我们构建搜索服务的后端。
地址:https://yuanqi.tencent.com/
- Dify运行环境
社区版或云服务版均可。若需本地部署,可参考此前的教程。
- DeepSeek-R1 API Key
免费赠送额度资源汇总:
https://docs.qq.com/sheet/DVFRSZ0RpdXNzb0xv?tab=w26k4p
实践步骤:从服务构建到工具集成
请遵循以下步骤,我们将分阶段完成整个构建过程。
阶段一:在腾讯元器中构建并发布搜索服务
- 创建工作流
登录腾讯元器,创建新智能体,选择“工作流”作为创建模式。
- 添加搜索插件
在工作流画布中,添加官方提供的“搜索”插件。
- 参数配置
配置插件的输入参数,确保其能够接收外部查询(Query)。
- 测试与发布
进行试运行,验证搜索功能正常。随后,发布工作流并将其关联到智能体,最终发布该智能体。
- 获取API凭证
在智能体管理页面,进入“调用API”部分,获取API的URL、
Authorization
以及签名所需的Headers
信息。这是连接Dify与元器的关键。
阶段二:在Dify中创建并封装HTTP工具
- 初始化工作流
在Dify中,创建一个包含 开始 -> HTTP请求 -> 结束 节点的工作流。
- 配置HTTP请求节点
这是集成的核心。
- Method
POST
- Request URL
:填入从腾讯元器获取的API URL。
- Headers
精确填入
Authorization
,X-TC-Timestamp
等全部认证头信息。 - Body
选择
raw-text
,格式为application/json
,并构造请求体,如{"query": "{{query}}"
- Method
- 单元测试
在HTTP节点内,使用“运行此步骤”功能,验证接口是否能返回
status 200
。 - 发布为工具
验证通过后,保存并发布工作流。最关键的一步是,点击“发布为工具”,为其命名(如
Internal_Search_Engine
)。
阶段三:在Agent中验证工具
- 创建测试Agent
新建一个Agent应用。
- 加载工具
在Agent的“工具”配置项中,添加你刚刚创建的工具。
- 端到端测试
在调试界面,向Agent提出一个需要实时信息的问题。观察其是否能够正确调用工具,并基于返回结果生成回答。
Agent成功调用私有化搜索工具
至此,你已成功为Dify生态系统注入了一个强大、私有且零成本的联网搜索能力。
问题排查与优化方向
- 常见
400 Bad Request
错误此问题通常源于HTTP请求构造错误。请重点排查:
Headers
中的认证信息是否完整、无误。
Body
中的JSON格式是否严格正确。
Content-Type
头是否设置为
application/json
。
- 性能优化
腾讯元器的搜索插件支持
limit
参数,可控制返回结果的数量(默认为10)。你可以在元器的工作流中暴露此参数,并在Dify的HTTP请求中动态传入,以根据不同场景调整信息密度,优化处理效率。
本次技术实践展示了Dify作为LLMOps平台的高度可扩展性。通过灵活运用其基础节点,我们可以集成任何外部服务,打破功能限制,构建出符合特定需求的、高性能的AI应用。希望本次分享能为你的项目带来启发。
关注我获得更多dify资源。