一文读懂Transformer:开启人工智能新纪元的神奇架构

目录

一、从 RNN 到 Transformer:NLP 技术的演进

二、Transformer 架构的诞生

三、Transformer 的核心组件

3.1 编码器 - 解码器架构

3.2 自注意力机制

3.3 多头注意力机制

3.4 位置编码

四、Transformer 的工作流程

4.1 输入处理

4.2 编码器处理

4.3 解码器处理

五、Transformer 在 NLP 领域的应用

5.1 机器翻译

5.2 文本生成

5.3 问答系统

5.4 文本分类

六、Transformer 的变体与扩展

6.1 BERT:双向编码器表征

6.2 GPT:生成式预训练 Transformer

6.3 其他变体模型

七、Transformer 的未来展望


一、从 RNN 到 Transformer:NLP 技术的演进

        自然语言处理(NLP)作为人工智能领域的重要分支,旨在让计算机理解和处理人类语言。早期的 NLP 模型主要基于规则和统计方法,虽然在一些简单任务上取得了一定成果,但在面对语言的复杂性和多样性时,表现出了明显的局限性。

        随着深度学习的兴起,循环神经网络(RNN)被广泛应用于 NLP 领域。RNN 具有记忆功能,能够处理序列数据,通过隐藏状态传递信息,捕捉序列中的依赖关系。然而,传统的 RNN 在处理长序列时存在梯度消失和梯度爆炸的问题,导致模型难以学习长距离的依赖关系。为了解决这些问题,长短期记忆网络(LSTM)和门控循环单元(GRU)等变体应运而生。LSTM 通过引入门控机制,能够有效地控制信息的流动,解决了梯度消失的问题,更好地处理长序列数据;GRU 则是 LSTM 的简化版本,计算效率更高。

        尽管 LSTM 和 GRU 在一定程度上缓解了 RNN 的局限性,但它们仍然依赖于顺序计算,难以实现高效的并行化训练。而 Transformer 的出现,彻底改变了 NLP 的格局。Transformer 摒弃了传统的循环结构,完全基于自注意力机制构建,能够并行计算,大大提高了训练效率。同时,它在捕捉长距离依赖关系方面表现出色,能够更好地理解文本的上下文信息。

二、Transformer 架构的诞生

        2017 年,谷歌大脑团队的 Ashish Vaswani 等人在论文《Attention Is All You Need》中提出了 Transformer 架构,这篇论文一经发表,便在学术界和工业界引起了巨大轰动。论文的核心观点是,仅依靠注意力机制就可以构建一个强大的序列到序列模型,而无需依赖循环或卷积结构。这一创新性的想法打破了传统的思维定式,为 NLP 的发展开辟了新的道路。

        在 Transformer 出现之前,传统的神经机器翻译模型主要基于 RNN 或 LSTM,这些模型在处理长序列时存在诸多问题。例如,长距离依赖问题使得模型难以捕捉到句子中相隔较远的词汇之间的关系;串行计算的方式导致模型无法充分利用并行计算的优势,训练和推理速度较慢;而且,传统模型在捕捉全局信息方面也存在不足,难以理解整个句子或文档的语义。

        Transformer 的出现,成功解决了这些问题。它通过自注意力机制,能够在处理某个位置的元素时,同时关注到序列中其他所有位置的元素,从而有效地捕捉长距离依赖关系。自注意力机制的并行计算特性,使得 Transformer 能够充分利用 GPU 等硬件加速设备,大大提高了训练和推理的效率。此外,Transformer 的编码器 - 解码器结构以及多头注意力机制,使其能够更好地捕捉全局信息,理解文本的上下文语义 。

三、Transformer 的核心组件

3.1 编码器 - 解码器架构

        Transformer 采用了编码器 - 解码器架构,这是一种经典的序列到序列模型结构。编码器负责将输入序列转化为一个中间表示,这个中间表示包含了输入序列的关键信息;解码器则将编码器输出的中间表示进一步转化为目标输出序列。以机器翻译任务为例,编码器将源语言句子编码成一个语义向量,解码器根据这个语义向量生成目标语言的翻译结果 。

        在 Transformer 中,编码器和解码器都由多个相同的层堆叠而成。编码器层主要包含多头自注意力机制和前馈神经网络,用于提取输入序列的特征;解码器层除了包含多头自注意力机制和前馈神经网络外,还增加了一个编码器 - 解码器注意力层,用于在生成输出序列时关注编码器的输出信息 。

3.2 自注意力机制

        自注意力机制是 Transformer 的核心创新点,它解决了传统序列模型在处理长距离依赖关系时的难题。自注意力机制允许模型在处理某个位置的元素时,同时关注输入序列中的其他所有位置的元素,从而捕捉到序列中各个元素之间的依赖关系。

        具体来说,自注意力机制的计算过程可以分为以下几个步骤:首先,将输入序列中的每个元素分别映射到三个不同的向量空间,得到查询(Query)、键(Key)和值(Value)向量。然后,通过计算查询向量与键向量之间的点积,得到注意力分数,这个分数表示了当前元素与其他元素之间的关联程度。为了使计算更加稳定,通常会将注意力分数除以一个缩放因子,这里的缩放因子一般是键向量维度的平方根。接着,使用 softmax 函数对注意力分数进行归一化处理,将其转化为概率分布,得到每个元素的注意力权重。最后,根据注意力权重对值向量进行加权求和,得到自注意力机制的输出。

        举个例子,假设有一个句子 “我喜欢吃苹果”,当模型处理到 “苹果” 这个词时,自注意力机制会计算 “苹果” 与句子中其他词(“我”“喜欢”“吃”)的关联程度。如果模型发现 “苹果” 与 “吃” 的关联度很高,那么在计算 “苹果” 的表示时,就会给予 “吃” 更大的权重,从而更好地理解 “苹果” 在句子中的语义。

3.3 多头注意力机制

        多头注意力机制是自注意力机制的扩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大雨淅淅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值