Stable diffusion是一个基于潜在扩散模型(latent diffusion model)的文本转图像模型,可以根据任意的文本输入生成逼真的图像。它是由德国慕尼黑大学的CompVis团队、美国的Runway公司和Stability AI公司以及德国的LAION慈善组织共同开发的,使用了LAION 5b数据集的一个子集作为训练数据。
Stable diffusion的原理是利用潜在扩散模型(LDM),一种深度生成模型,来从文本生成图像。LDM是一种基于扩散过程(diffusion process)的模型,它可以将图像从高维像素空间映射到低维潜在空间,然后通过逐步去噪(denoising)的方式来重建图像。LDM的优点是可以处理更少的数字,提高计算效率和稳定性,同时保持高质量的图像生成能力。
Stable diffusion可以用于多种场景和应用,例如创意设计、艺术创作、教育辅助、娱乐消遣等。它可以根据任何你能想象的文本输入生成图像,无论是具体的物体、抽象的概念、复杂的场景、甚至是不存在的事物。它还可以用于图像修复、图像扩展、图像翻译等任务,只要给出相应的文本提示和图像输入。
免费学习资料:夸克网盘分享