文本表示(词嵌入表示&词袋表示BOW)

文章介绍了词嵌入表示的概念,它是连续、低维、稠密的词向量,可用于优化目标任务。词袋模型(BagofWords)则通过词语的频次统计,但忽略了语序和语义。文章提到了CountVectorizer和HashingVectorizer在处理文本时的应用,以及可能的数据稀疏问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

词嵌入表示

概念:词嵌入表示是一个连续,低维,稠密向量表示,简称词向量,而且向量值可以根据目标任务的优化进行调整。也可以充分利用语句中的上下文信息作为自监督信号进行训练,提高词语的效果。

这里常用的是wordvec2,lstm等构建词向量的方法。(后续会继续补充一部分词嵌入的知识)

词袋表示

概念:词袋表示(Bag of Words BOW),将文本中的词语所对应的向量(one-hot/ 分布式表示向量/ 词嵌入)表示,进行相加或者加权求和。这样得出的词向量只在上下文出现的频次有关,这种做法虽然简单,但是忽略了词语的顺序以及词语的语义信息

如果引入二元词表(Bigram)将两个词语作为一个词,同时再加上学习二元次的词向量表示,但是可能会造成数据稀疏问题。

代码

输入为一个str类型的列表,而且encodig = ‘utf-8’,输出为一个词频矩阵,而且用to_array()方法可以转化。

from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer
content_list = ['我 喜欢 深度 学习',
        '我 爱 机器 学习'] 
# vectorizer=CountVectorizer()
vectorizer = HashingVectorizer(n_features=6, norm=None) # 一般用hash降低纬度比较多
model_output = vectorizer.fit_transform(content_list) # 输入为list类型的str,输出为词频矩阵
# print(vectorizer.get_feature_names()) # 在CountVectorizer类方法中调用get_feature_names()
print("词频统计:")
#输出4个文本的词频统计:左边的括号中的两个数字分别为(文本序号,词序号),右边数字为频次
print(vectorizer.fit_transform(content_list))
print("\n词袋模型:")
print(vectorizer.fit_transform(content_list).toarray()) # 将产生的矩阵转化为array类型的数据

输出

词频统计:
  (0, 0)    1.0
  (0, 2)    -1.0
  (0, 5)    -1.0
  (1, 0)    -1.0
  (1, 2)    -1.0

词袋模型:
[[ 1.  0. -1.  0.  0. -1.]
 [-1.  0. -1.  0.  0.  0.]]

<think>嗯,用户想了解模型(Bag ofWords,BoW)的概念和实现方法。首先,我需要回忆一下模型的基本定义。根据引用[2],BoW是一种用于文本处理的特征提取方法,常用于自然语言处理任务。它的核心是将文本表示汇的无序集合,忽略序和语法结构。接下来,我应该解释模型的工作原理。引用[4]提到,BoW通过构建汇表,每个文档被转换为向量,向量的每个位置对应汇表中一个的出现次数。比如“My friendJack likeJack Ma”会被表示为各出现的次数,如Jack出现两次。这里需要注意强调频计数和忽略序的特点,这也是它的主要缺点,如无法区分“我爱你”和“你爱我”。然后,关于实现步骤,引用[1]和[3]提供了线索。实现通常包括预处理(分、去停用)、构建汇表、生成频向量。Python中可以使用CountVectorizer,n-gram范围可以调整,比如2-gram考虑相邻,如引用[3]中的示例。需要提到这些步骤,并给出代码示例,比如使用sklearn的CountVectorizer。 优缺点部分,引用[2]和[4]都有说明。优点包括简单、计算高效,适合文本分类;缺点是无法捕捉序和语义,高维稀疏矩阵的问题。这里可以对比n-gram和TF-IDF等改进方法,如引用[1]提到的。用户可能需要知道如何用Python具体实现,所以给出代码示例很重要。同时,结合引用中的信息,确保正确性。比如,预处理步骤中的分和去停用,然后使用CountVectorizer转换文本。此外,可以提到高级变体,如TF-IDF和WordEmbeddings,但用户主要问的是基础BoW,所以这部分可以作为扩展。最后,生成相关问题需要考虑用户可能的后续疑问,比如优缺点、应用场景、改进方法等。确保问题覆盖概念、实现细节、优缺点比较,以及实际应用,帮助用户深入理解。</think>### 模型(Bag of Words, BoW)介绍及实现 #### 一、概念与特点 **模型(BoW)** 是一种用于文本特征提取的经典方法,核心思想是将文本视为汇的无序集合,忽略序和语法结构,仅关注频。例如: - 句子“我爱你”和“你爱我”会被表示为相同的向量$[1, 1, 1]$(假设汇表为`["我", "爱", "你"]`)[^2][^4]。 **主要特点**: 1. **频计数**:向量中每个元素表示汇表中对应的出现次数。 2. **稀疏性**:文本向量大部分位置为零(因单个文档仅包含部分汇)。 3. **应用场景**:文本分类、情感分析、信息检索等[^2][^4]。 #### 二、实现步骤 1. **文本预处理**: - 分(如英文按空格分割,中文需分工具)。 - 去停用(如“的”“是”等无实义)[^1][^3]。 2. **构建汇表**: - 收集所有文档中的独特汇,生成固定顺序的汇表。 3. **向量化表示**: - 将每个文档映射为与汇表长度相同的向量,记录频。 #### 三、Python实现示例 ```python from sklearn.feature_extraction.text import CountVectorizer # 示例文本 corpus = [ "自然语言处理 是 人工智能 的 重要分支", "模型 是 自然语言处理 的 基础方法" ] # 使用CountVectorizer实现BoW vectorizer = CountVectorizer(token_pattern=r"(?u)\b\w+\b") # 匹配中文bow_matrix = vectorizer.fit_transform(corpus) # 输出汇表及向量 print("汇表:", vectorizer.get_feature_names_out()) print("频矩阵:\n", bow_matrix.toarray()) ``` **输出**: ``` 汇表: ['人工智能' '基础方法' '分支' '处理' '重要' '模型' '自然语言' '' '是'] 频矩阵: [[1 0 1 1 1 0 1 0 1] [0 1 0 1 0 1 1 1 1]] ``` #### 四、优缺点分析 **优点**: - 简单高效,适合小规模文本分类。 - 计算复杂度低,易于实现[^2][^4]。 **缺点**: - **忽略序和语义**:无法区分同义序变化(如“猫吃鱼”和“鱼吃猫”)。 - **高维稀疏性**:汇表较大时,向量维度爆炸[^2][^4]。 #### 五、改进方法 1. **n-gram模型**:捕捉局部序(如`2-gram`将“自然语言”视为一个元)[^3]。 2. **TF-IDF加权**:降低高频但低信息量的权重(如“的”“是”)[^1]。 3. **词嵌入(Word Embeddings)**:通过向量表示语义相似性(如Word2Vec)[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值