DSSM 召回整理

谷歌论文:https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf

  1. 这个论文主要是用来解决NLP领域语义相似度任务的。word hashing 直接把文本映射成了远低于 vocab size的向量中,然后输入DNN,输出得到一个128维的低维语义向量。
  2. Query和document的语义相似度就可以用这两个向量的cosine相似度来表示,进一步我们可以通过softmax对不同的document做排序。这就是最初的DSSM。
  3. 如果把document换成item或是广告,就演变成了一个推荐模型。其中 D1 是正样本,D2 ~ Dn 是负样本

在这里插入图片描述

YouTube 推荐模型:https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf

推荐系统用来做召回时:
输入到底是什么:

  1. user 侧的输入:用户历史点击的 item id(或者是 item id avg embedding?),年龄性别等基础属性特征。实时点击/在浏览的 item 也作为输入?
  2. item 侧的输入:item 基础特征,item id?

样本的构建:

  1. 正样本:将用户最近点击,消费,转化等的数据(根据具体预估目标决定)采集后作为正样本;可能存在的问题:用户点击时doc排名越靠前越容易被点击,仅用点击来判断正负样本,产生的噪声较大,模型难以收敛
  2. 负样本:采样按照全局热度但未点击(Youtube负采样套路)作为负样本构造
  3. 一般正负样本一般是1:3/4/5/6(负样本的选择在 batch 内进行?in-batch softmax 损失函数?)

损失函数的选择:

我们(baidu:https://www.jiqizhixin.com/articles/2017-06-15-5)采用了 pair-wise Ranking Loss 来进行 SimNet 的训练。以网页搜索任务为例,假设搜索查询文本为 Q,相关的一篇文档为 D+,不相关的一篇文档为 D-,二者经过 SimNet 网络得到的和 Q 的匹配度得分分别为 S(Q,D+) 和 S(Q,D-),而训练的优化目标就是使得 S(Q,D+)>S(Q,D-)。实际中,我们一般采用 Max-Margin 的 Hinge Loss:max⁡{0,margin-(S(Q,D+)-S(Q,D-))}。这种 loss 简洁、高效,还可以通过 margin 的不同设定,来调节模型得分的区分度。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值