多臂老虎机

2.1 老虎机和强化学习之间的关系

强化关注交互过程中的学习,是一种试错型学习。在正式学习强化学习前,我们先介绍老虎机问题,他可以被看作简化版的强化学习问题。与强化学习不同,老虎机没有状态信息,只有动作和奖励,算是最简单的和环境交互中的学习的一种形式。多臂老虎机中的探索与利用问题(exploration vs exploitation)是一个特别经典的问题,理解这个问题有助于我们学习强化学习。

2.2 问题介绍

2.2.1 问题背景

在此问题中,有一个拥有K根拉杆的老虎机。最开始,奖励概率分布未知。

(有K种动作,对应K种奖励)

2.2.2 问题要求

我们需要再操作T次拉杆后获得尽可能高的累积奖励。

2.2.3 问题分析

因此,我们需要在 “探索拉杆的获奖概率” 和 “根据经验选择获奖最多的拉杆” 中进行权衡。

2.2.4 累积懊悔

2.2.5 估计期望奖励

2.3 策略总结

2.3.1 epision-贪婪

用random获取一个随机数,若该随机数小于临界点epision,就进行随机挑选。否则,就选取当前的最优杆。跟基础贪婪算法相比就是设定了一个epision,防止一直停留在局部最优解,也是一种对探索和利用平衡的处理。

该方法无论epision设定多少,累积懊悔几乎是线性增长的。

但若按时间调节epision,可以使累积懊悔达到次线性增长。

2.3.2 上置信界算法

2.3.3 汤普森采样算法

### 老虎机算法在Java中的实现 老虎机问题是强化学习领域的一个经典问题,旨在通过一系列试验找到具有最高回报率的动作。一种常见的解决策略是ε-greedy方法,在该方法中,大部分时间会选择当前估计价值最高的动作(即贪婪选择),但在一小部分时间内会随机选取其他动作来探索可能更好的选项[^3]。 下面是一个简单的基于ε-greedy策略的老虎机算法的Java实现: ```java import java.util.Random; public class EpsilonGreedyBandit { private final int numArms; private double[] qValues; // Estimated values for each arm. private Random randomGenerator; private static final double epsilon = 0.1; // Exploration rate. public EpsilonGreedyBandit(int numberOfArms) { this.numArms = numberOfArms; reset(); randomGenerator = new Random(System.currentTimeMillis()); } /** * Resets the agent's knowledge about arms' rewards. */ public void reset() { qValues = new double[numArms]; for (int i = 0; i < numArms; ++i) { qValues[i] = 0.0; } } /** * Selects an action based on current estimates and exploration policy. * * @return Index of selected arm/action. */ public int selectAction() { if (randomGenerator.nextDouble() > epsilon) { // Exploit learned values. return exploit(); } else { // Explore other options. return explore(); } } private int exploit() { int bestArmIndex = 0; for (int i = 1; i < numArms; ++i) { if (qValues[i] > qValues[bestArmIndex]) { bestArmIndex = i; } } return bestArmIndex; } private int explore() { return randomGenerator.nextInt(numArms); } /** * Updates estimate after receiving reward from environment. * * @param chosenArm Arm that was pulled. * @param reward Reward received from pulling given arm. */ public void updateEstimate(int chosenArm, double reward) { qValues[chosenArm] += 0.1 * (reward - qValues[chosenArm]); // Using fixed step-size alpha=0.1. } } ``` 此代码片段展示了如何创建一个老虎机模拟器类`EpsilonGreedyBandit`,它实现了基本的ε-greedy行为模式。在这个例子中,使用了一个固定的学习速率α=0.1来进行奖励值的更新操作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值