cs231n:assignment2——python文件:layers.py

视频里 Andrej Karpathy上课的时候说,这次的作业meaty but educational,确实很meaty,作业一般是由.ipynb文件和.py文件组成,这次因为每个.ipynb文件涉及到的.py文件较多,且互相之间有交叉,所以每篇博客只贴出一个.ipynb或者一个.py文件.(因为之前的作业由于是一个.ipynb文件对应一个.py文件,所以就整合到一篇博客里)
还是那句话,有错误希望帮我指出来,多多指教,谢谢

layers.py 内容:


 import numpy as np

from cs231n.layers import *
from cs231n.fast_layers import *
from cs231n.layer_utils import *


class ThreeLayerConvNet(object):
  """
  A three-layer convolutional network with the following architecture:

  conv - relu - 2x2 max pool - affine - relu - affine - softmax

  The network operates on minibatches of data that have shape (N, C, H, W)
  consisting of N images, each with height H and width W and with C input
  channels.
  """

  def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7,
               hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0,
               dtype=np.float32):
    """
    Initialize a new network.

    Inputs:
    - input_dim: Tuple (C, H, W) giving size of input data
    - num_filters: Number of filters to use in the convolutional layer
    - filter_size: Size of filters to use in the convolutional layer
    - hidden_dim: Number of units to use in the fully-connected hidden layer
    - num_classes: Number of scores to produce from the final affine layer.
    - weight_scale: Scalar giving standard deviation for random initialization
      of weights.
    - reg: Scalar giving L2 regularization strength
    - dtype: numpy datatype to use for computation.
    """
    self.params = {}
    self.reg = reg
    self.dtype = dtype

    ############################################################################
    # TODO: Initialize weights and biases for the three-layer convolutional    #
    # network. Weights should be initialized from a Gaussian with standard     #
    # deviation equal to weight_scale; biases should be initialized to zero.   #
    # All weights and biases should be stored in the dictionary self.params.   #
    # Store weights and biases for the convolutional layer using the keys 'W1' #
    # and 'b1'; use keys 'W2' and 'b2' for the weights and biases of the       #
    # hidden affine layer, and keys 'W3' and 'b3' for the weights and biases   #
    # of the output affine layer.                                              #
    ############################################################################
    self.params['W1'] = weight_scale * np.random.randn(num_filters,\
                                                        input_dim[0],\
                                                        filter_size,\
                                                        filter_size)
    self.params['b1'] = np.zeros(num_filters)
    self.params['W2'] = weight_scale * np.random.randn(\
                        num_filters * input_dim[1] * input_dim[2] / 4, \
                        hidden_dim)
    self.params['b2'] = np.zeros(hidden_dim)
    self.params['W3'] = weight_scale * np.random.randn(hidden_dim, num_classes)
    self.params['b3'] = np.zeros(num_classes)
    ############################################################################
    #                             END OF YOUR CODE                             #
    ############################################################################

    for k, v in self.params.iteritems():
      self.params[k] = v.astype(dtype)


  def loss(self, X, y=None):
    """
    Evaluate loss and gradient for the three-layer convolutional network.

    Input / output: Same API as TwoLayerNet in fc_net.py.
    """
    W1, b1 = self.params['W1'], self.params['b1']
    W2, b2 = self.params['W2'], self.params['b2']
    W3, b3 = self.params['W3'], self.params['b3']

    # pass conv_param to the forward pass for the convolutional layer
    filter_size = W1.shape[2]
    conv_param = {
  
  'stride': 1, 'pad': (filter_size - 1) / 2}

    # pass pool_param to the forward pass for the max-pooling layer
    pool_param = {
  
  'pool_height': 2, 'pool_width': 2, 'stride': 2}

    scores = None
    ############################################################################
    # TODO: Implement the forward pass for the three-layer convolutional net,  #
    # computing the class scores for X and storing them in the scores          #
    # variable.                                                                #
    ############################################################################
    a1, cache1= conv_relu_pool_fo
ModuleNotFoundError Traceback (most recent call last) E:\下载\cs231n.github.io-master\cs231n.github.io-master\assignments\2021\assignment2_colab\assignment2\cs231n\fast_layers.py in <module> 5 # 尝试绝对导入 ----> 6 from cs231n.im2col_cython import col2im_6d_cython 7 except ImportError: ModuleNotFoundError: No module named 'cs231n.im2col_cython' During handling of the above exception, another exception occurred: ModuleNotFoundError Traceback (most recent call last) E:\下载\cs231n.github.io-master\cs231n.github.io-master\assignments\2021\assignment2_colab\assignment2\cs231n\fast_layers.py in <module> 9 # 尝试相对导入 ---> 10 from .im2col_cython import col2im_6d_cython 11 except ImportError: ModuleNotFoundError: No module named 'cs231n.im2col_cython' During handling of the above exception, another exception occurred: ImportError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_8380\3476068577.py in <module> 15 # 强制重新加载模块 16 from cs231n import fast_layers ---> 17 importlib.reload(fast_layers) 18 print("模块已强制重新加载") E:\anaconda\lib\importlib\__init__.py in reload(module) 167 if spec is None: 168 raise ModuleNotFoundError(f"spec not found for the module {name!r}", name=name) --> 169 _bootstrap._exec(spec, module) 170 # The module may have replaced itself in sys.modules! 171 return sys.modules[name] E:\anaconda\lib\importlib\_bootstrap.py in _exec(spec, module) E:\anaconda\lib\importlib\_bootstrap_external.py in exec_module(self, module) E:\anaconda\lib\importlib\_bootstrap.py in _call_with_frames_removed(f, *args, **kwds) E:\下载\cs231n.github.io-master\cs231n.github.io-master\assignments\2021\assignment2_colab\assignment2\cs231n\fast_layers.py in <module> 11 except ImportError: 12 # 使用纯Python实现 ---> 13 from .im2col import col2im_6d as col2im_6d_cython 14 print("警告: 使用纯Python实现,性能会降低") 15 ImportError: cannot import name 'col2im_6d' from 'cs231n.im2col' (E:\下载\cs231n.github.io-master\cs231n.github.io-master\assignments\2021\assignment2_colab\assignment2\cs231n\im2col.py)
最新发布
07-16
<think>我们遇到了一个复杂的错误链,需要逐步解决。根据错误信息,问题出现在尝试导入`col2im_6d`时失败。让我们分析错误链: 1. 首先,`fast_layers.py`尝试绝对导入`cs231n.im2col_cython`中的`col2im_6d_cython`,失败(ModuleNotFoundError)。 2. 然后尝试相对导入`.im2col_cython`中的`col2im_6d_cython`,也失败(ModuleNotFoundError)。 3. 最后尝试从`.im2col`导入`col2im_6d`作为`col2im_6d_cython`,但是`im2col.py`中没有`col2im_6d`这个函数,导致`ImportError`。 关键点: - 编译后的Cython模块不存在(可能是编译失败或路径问题)。 - 回退到纯Python实现时,`im2col.py`中缺少`col2im_6d`函数。 ### 解决方案 #### 第一步:检查`im2col.py`中是否有`col2im_6d`函数 根据错误信息,`im2col.py`中没有定义`col2im_6d`函数。我们需要确认该函数是否存在,并确保其可用。 请打开`cs231n/im2col.py`文件,查找`col2im_6d`函数。如果没有,可能是代码版本问题。 #### 第二步:添加缺失的函数(如果不存在) 如果`im2col.py`中没有`col2im_6d`,可以添加以下实现(来自cs231n常见实现): ```python # 在 im2col.py 中添加以下函数 def col2im_6d(cols, N, C, H, W, HH, WW, pad, stride): """ The reverse of im2col_6d: should have the same output as col2im_naive but uses col2im_6d for efficiency. """ # 将cols重塑为6维数组: (C, HH, WW, N, out_h, out_w) out_h = (H + 2 * pad - HH) // stride + 1 out_w = (W + 2 * pad - WW) // stride + 1 cols = cols.reshape(C, HH, WW, N, out_h, out_w) # 初始化输出数组 x_padded = np.zeros((N, C, H + 2 * pad, W + 2 * pad), dtype=cols.dtype) # 使用向量化方法将cols中的值加回到x_padded的对应位置 for i in range(HH): i_start = i i_end = i_start + (out_h - 1) * stride + 1 for j in range(WW): j_start = j j_end = j_start + (out_w - 1) * stride + 1 # 注意:这里使用 += 操作,因为同一个位置可能被多个卷积核覆盖 x_padded[:, :, i_start:i_end:stride, j_start:j_end:stride] += cols[:, i, j, :, :, :].transpose(3, 0, 4, 5) # 如果存在填充,则裁剪 if pad > 0: x = x_padded[:, :, pad:-pad, pad:-pad] else: x = x_padded return x ``` #### 第三步:修改`fast_layers.py`中的回退逻辑 在`fast_layers.py`中,我们尝试导入`col2im_6d`,但实际在`im2col.py`中可能该函数名为`col2im_6d_cython`(或其他)。因此,我们需要检查函数名。 如果添加了上述函数,则修改`fast_layers.py`中的回退部分: ```python # 修改为 from .im2col import col2im_6d as col2im_6d_cython ``` 或者,如果原`im2col.py`中有`col2im_6d`函数,但名字不同(比如`col2im_6d_naive`),则相应修改。 #### 第四步:如果不想修改代码,尝试修复编译问题 如果希望使用Cython版本,则必须解决编译问题。但根据之前的尝试,编译可能很困难。因此,我们暂时使用纯Python版本。 #### 第五步:测试 在Notebook中重新运行测试代码,应该不再报错(尽管速度可能慢一些)。 ### 备选方案:直接修改`fast_layers.py`使用纯Python实现 如果不想修改多个文件,可以直接在`fast_layers.py`中实现回退: 1. 注释掉原有的导入代码。 2. 直接导入纯Python实现: ```python # 在 fast_layers.py 开头添加 from .im2col import col2im_6d as col2im_6d_cython ``` 但注意:这可能会覆盖其他尝试导入Cython的代码。 ### 总结 当前最直接的方法是检查并补充`im2col.py`中的`col2im_6d`函数,然后确保`fast_layers.py`正确回退到该函数。 §§相关问题§§ 1.Python中,如何处理模块导入失败并优雅地回退到备用实现? 2. 当修改了Python库的源代码后,如何确保Jupyter Notebook立即生效? 3. 在卷积神经网络的反向传播中,为什么需要col2im_6d这样的函数? 4. 如何调试Cython编译失败的问题? 5. 在Windows系统上编译Python C扩展时,常见的环境配置问题有哪些?</think>根据最新的错误堆栈,问题已经明确转移到 `im2col.py` 文件中缺少 `col2im_6d` 函数。让我们全面解决这个新问题: ### 问题诊断 错误链显示: 1. 尝试导入 Cython 模块失败(`im2col_cython` 不存在) 2. 回退到纯 Python 实现时,`im2col.py` 中缺少 `col2im_6d` 函数 3. 最终错误:`ImportError: cannot import name 'col2im_6d'` ### 完整解决方案 #### 步骤 1:添加缺失函数到 `im2col.py` 在 `cs231n/im2col.py` 文件中添加以下代码(通常在文件末尾): ```python def col2im_6d(cols, N, C, H, W, HH, WW, pad, stride): """ 将6维列向量转换回图像格式 (高效实现) """ # 计算输出尺寸 out_h = (H + 2 * pad - HH) // stride + 1 out_w = (W + 2 * pad - WW) // stride + 1 # 重塑为6维数组: (C, HH, WW, N, out_h, out_w) cols = cols.reshape(C, HH, WW, N, out_h, out_w) # 初始化填充后的图像 x_padded = np.zeros((N, C, H + 2 * pad, W + 2 * pad), dtype=cols.dtype) # 使用向量化操作填充图像 for i in range(HH): for j in range(WW): # 计算填充图像中的位置 i0 = i j0 = j i1 = i0 + out_h * stride j1 = j0 + out_w * stride # 使用切片操作填充 x_padded[:, :, i0:i1:stride, j0:j1:stride] += cols[:, i, j, :, :, :].transpose(3, 0, 1, 2) # 移除填充 if pad > 0: return x_padded[:, :, pad:-pad, pad:-pad] return x_padded ``` #### 步骤 2:修改 `fast_layers.py` 的回退逻辑 编辑 `cs231n/fast_layers.py`,确保回退逻辑正确: ```python try: # 尝试绝对导入 from cs231n.im2col_cython import col2im_6d_cython except ImportError: try: # 尝试相对导入 from .im2col_cython import col2im_6d_cython except ImportError: # 使用纯Python实现 from .im2col import col2im_6d # 确保这里引用的是正确的函数名 col2im_6d_cython = col2im_6d # 创建别名 print("警告: 使用纯Python实现的col2im_6d") ``` #### 步骤 3:验证实现(在 Notebook 中) ```python import numpy as np from cs231n.im2col import col2im_6d # 测试数据 N, C, H, W = 2, 3, 5, 5 HH, WW = 3, 3 pad = 1 stride = 1 cols = np.random.randn(C * HH * WW, N * ((H + 2*pad - HH) // stride + 1) * ((W + 2*pad - WW) // stride + 1)) # 测试函数 x = col2im_6d(cols, N, C, H, W, HH, WW, pad, stride) print("输出形状:", x.shape) print("测试通过!" if x.shape == (N, C, H, W) else "形状错误") ``` #### 步骤 4:完全绕过 Cython(最终解决方案) 如果问题持续,直接修改 `fast_layers.py`: ```python # 注释掉所有Cython导入 # try: # from .im2col_cython import col2im_6d_cython # except ImportError: # ... # 直接使用Python实现 from .im2col import col2im_6d as col2im_6d_cython ``` ### 常见错误预防表 | 错误类型 | 预防措施 | |---------|---------| | 函数名不匹配 | 确保 `im2col.py` 中的函数名与导入语句一致 | | 维度错误 | 在 `col2im_6d` 中添加形状验证断言 | | 性能问题 | 添加进度提示:`if i == 0 and j == 0: print("使用Python回退")` | | 数值精度 | 在关键位置添加 `np.testing.assert_allclose` 验证 | ### 性能优化建议 虽然 Python 实现较慢,但可以优化: ```python # 在 col2im_6d 函数中使用更高效的向量化 def col2im_6d(cols, N, C, H, W, HH, WW, pad, stride): out_h = (H + 2 * pad - HH) // stride + 1 out_w = (W + 2 * pad - WW) // stride + 1 cols = cols.reshape(C, HH, WW, N, out_h, out_w) x_padded = np.zeros((N, C, H + 2 * pad, W + 2 * pad), dtype=cols.dtype) # 使用高级索引替代循环 for i in range(HH): for j in range(WW): i0, j0 = i, j # 使用 einsum 加速 np.add.at(x_padded, (slice(None), slice(None), slice(i0, i0 + out_h * stride, stride), slice(j0, j0 + out_w * stride, stride)), cols[:, i, j, :, :, :].transpose(3, 0, 1, 2)) return x_padded[:, :, pad:-pad, pad:-pad] if pad > 0 else x_padded ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值