概论第7章_参数估计_点估计的评价标准_相合性_无偏性_有效性

点估计的评价标准包括: 相合性, 无偏性, 有效性。

一. 相合性

衡量一个估计是否可行的必要条件, 就是估计的相合性。
本文不提其定义了。直接给出一些结论。
结论
设有正态总体N(μ,σ2\mu, \sigma^2μ,σ2) 的样本, 则有

  1. x‾\overline xxμ\muμ 的相合估计。
  2. 样本二阶中心矩 sn2=s_n^2 =sn2=1n∑i=1n(xi−x‾)\frac{1}{n}\sum\limits_{i=1}^n(x_i-\overline x)n1i=1n(xix)σ2\sigma^2σ2的相合估计。
  3. 样本方差 s2s^2s2 也是σ2\sigma^2σ2的相合估计。

设有均匀总体U(0, θ\thetaθ)的样本, θ\thetaθ 的极大似然估计是相合估计。

二. 无偏性

2.1 定义
θ^=θ^(x1,...,xn)\hat\theta=\hat\theta(x_1, ..., x_n)θ^=θ^(x1,...,xn)θ\thetaθ的一个估计, θ\thetaθ 的参数空间为 Θ\ThetaΘ, 若对任意的 θ∈Θ\theta \in \ThetaθΘ, 有

E(θ^\hat\thetaθ^)=θ\thetaθ

则称 θ^\hat\thetaθ^θ\thetaθ 的无偏估计, 否则称为有偏估计。
~~
无偏性要求可以改写为 E(θ^−θ)=0E(\hat\theta - \theta) = 0E(θ^θ)=0, 这表示无偏估计没有系统偏差。

无偏性不具有不变性。 若θ^\hat\thetaθ^θ\thetaθ 的无偏估计,一般而言g(θ^)(\hat\theta)(θ^)不是g(θ)(\theta)(θ)的无偏估计, 除非g(θ)(\theta)(θ)θ\thetaθ的线性函数。
例如: 样本方差s2s^2s2σ2\sigma^2σ2的无偏估计, 但 s 不是σ\sigmaσ的无偏估计。

考点1. 无偏性: 系数之和为1, 是最无偏的估计

看例题
在这里插入图片描述

三. 有效性

所谓 有效性, 是建立在无偏估计的基础上
定义: 设 θ^1\hat\theta_1θ^1, θ^2\hat\theta_2θ^2θ\thetaθ 的两个无偏估计, 如果对任意的 θ∈Θ\theta \in \ThetaθΘ

D(θ^1⩽\hat\theta_1\leqslantθ^1 D(θ^2\hat\theta_2θ^2)

且至少有一个 θ∈Θ\theta\in\ThetaθΘ 使得上述不等号严格成立, 则称 θ^1\hat\theta_1θ^1θ^2\hat\theta_2θ^2 有效
考点2. 有效性: 系数方差最小的是最有效的

例题 2011.7
x1,x2x_1, x_2x1,x2来自任意总体 X的2个样本, 则E(X)的无偏估计量中, 最有效的估计量是( )

A. 23x1+13x2\frac{2}{3}x_1+\frac{1}{3}x_232x1+31x2    B. 14x1+34x2\frac{1}{4}x_1+\frac{3}{4}x_241x1+43x2    C. 25x1+35x2\frac{2}{5}x_1+\frac{3}{5}x_252x1+53x2    D.12x1+12x2\frac{1}{2}x_1+\frac{1}{2}x_221x1+21x2

解: 用瞪眼法,易知 D系数方差最小, 为最有效。
答案: D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值