TPU(张量处理单元,Tensor Processing Unit)是谷歌于2016年推出的一种可编程AI加速器,针对其TensorFlow平台进行优化,专注于深度学习中的矩阵乘法等密集计算任务。它采用脉动阵列架构,可并行执行大量乘积累加操作,能高效处理高维张量数据,擅长处理大规模数据集和复杂模型的训练与推理任务。
NPU(神经网络处理单元,Neural Processing Unit)是一种专门为加速神经网络计算而设计的处理器,通过模拟人类神经元和突触的工作方式,采用数据流驱动的并行计算架构,能够高效执行大规模的矩阵运算和神经网络推理。NPU在电路层模拟人类神经元和突触,使用深度学习指令集直接处理大规模的神经元和突触,通过单指令流多数据流传输提升数据效率,完成神经元权重更新,从而提高运行效率。