对于非线性逻辑回归问题,你选择的函数可能是多项式函数,指数函数,或幂函数等等。本篇博文主要阐述非线性逻辑回归问题的处理过程,并使用正则化技术。详细理论请参阅我的机器学习理论系列博文。
如图所示,对上图进行逻辑回归处理,很明显选择多项式函数是个不错的主意,当然对于不同分布图要选择合适的函数。本列子中选择
H(x)=Θ0+Θ1*X1+Θ2*X2^2+Θ3*X3
在SRC.txt文件中对应着上图的数据:
这里有个矩阵操作小技巧:
当你进行梯度下降时候,最直观的代码入下图
当你对矩阵练习熟练时,可以这样去写,如下图
对于初学者来说,直观代码更容易理解,其实这2段代码是同一个含义。
结果:
画图: