机器学习算法实现02-非线性逻辑回归正则化

本文探讨了非线性逻辑回归问题的解决方法,重点介绍了如何选用多项式函数进行拟合,并通过实例展示了如何利用正则化技术进行梯度下降等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   对于非线性逻辑回归问题你选择的函数可能是多项式函数,指数函数,或幂函数等等。本篇博文主要阐述非线性逻辑回归问题的处理过程,并使用正则化技术。详细理论请参阅我的机器学习理论系列博文。

  

如图所示,对上图进行逻辑回归处理,很明显选择多项式函数是个不错的主意,当然对于不同分布图要选择合适的函数。本列子中选择

H(x)=Θ0+Θ1*X1+Θ2*X2^2+Θ3*X3

在SRC.txt文件中对应着上图的数据:




这里有个矩阵操作小技巧:

当你进行梯度下降时候,最直观的代码入下图


当你对矩阵练习熟练时,可以这样去写,如下图


对于初学者来说,直观代码更容易理解,其实这2段代码是同一个含义。



结果:



画图:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值