机器学习算法实现04-k-means均值算法的实例

本文通过实战案例介绍K-均值算法的基本原理与步骤。包括如何选择初始聚类中心,依据距离分配数据点到最近的中心点形成聚类,并通过迭代计算各聚类的平均值来更新中心点位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  根据之前博文中k-均值算法表述,编写代码,对k-均值算法有个清晰认识


问题:将图中数据分成3组。

下图是整个k-均值算法的流程


  1,首先选择 K 个随机的点,称为聚类中心(cluster centroids);

  2,对于数据集中的每一个数据,按照距离 K 个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。

  3,计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。


  代码:对于数据集中的每一个数据,按照距离 K 个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。



 代码:计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。


  

第一次计算



第六次计算



第十次计算




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值