Android游戏开发---基本View绘图

      游戏中一般很少在layout文件夹下来创建xml布局文件来显示画面,而是用自定义的View来显示。

1. 首先,从自定义Button开始说起。

系统提供的Button是完全不能满足游戏开发的需要。只需在onDraw写下想绘制的内容。

/*
 * 自己来做按钮.
 */
public class MyButton extends Button
{
	/*默认是这个构造方法, 但是父类没有不带参数的构造器, 所有下面的构造方法是必须有的
		public MyButton()
		{
			super();
		}
	*/
	public MyButton(Context context)
	{
		super(context);
	}

	/**
	 * 重写onDraw, 对按钮进行重新绘制的方法, 想怎么画就怎么画.
	 */
	@Override
	protected void onDraw(Canvas canvas)
	{
		// TODO Auto-generated method stub
		super.onDraw(canvas);//这句是调用父类(Button)中的方法先进行绘制, 没有这句setText...等方法就没有用了.
		Paint paint = new Paint();
		paint.setColor(Color.BLUE);
		canvas.drawCircle(100, 100, 100, paint);
	}

}

2. 类比Button的绘制,其实我们完全可以把Button换成View类,Button也是View是子类。

View就是一个视图画面,想怎么画就怎么画。

/*
 * 制作游戏View的一般模版View
 */
public class GameView extends View
{
	private Paint paint = null; //一般绘制过程中只需要一个画笔, 可以先声明出来. 然后在构造方法中进行初始化.
	private Bitmap bitmap1 = null;
	private Bitmap bitmap2 = null;
	private Matrix matrix = null;

	public GameView(Context context)
	{
		//一般将new方法写入构造器中。如果写入onDraw中, 那么每调用一次onDraw方法,就会new一次的。
		super(context);
		paint = new Paint();
		//第一种获取图片的方法, 普遍的, 也能获取其他资源.
		bitmap1 = ((BitmapDrawable) getResources().getDrawable(
				R.drawable.ic_launcher)).getBitmap();	//注意括号
		//第二种方法, 简单一点, 获取图片
		bitmap2 = BitmapFactory.decodeResource(getResources(),
				R.drawable.ic_action_search);

		matrix = new Matrix();
	}

	protected void onDraw(Canvas canvas)
	{
		super.onDraw(canvas);
		paint.setColor(Color.RED);
		paint.setStyle(Style.STROKE);
		paint.setStrokeWidth(5);//设置边为5像素, 默认线的边框是1px的宽度
		canvas.drawLine(0, 0, 100, 100, paint);
		//画矩形
		Rect rect = new Rect(100, 200, 300, 400);
		paint.setColor(Color.YELLOW);
		canvas.drawRect(rect, paint);

		RectF rectf = new RectF(rect);  //rectf全部为float型数据, 而rect为整形
		paint.setColor(Color.LTGRAY);
		canvas.drawRoundRect(rectf, 40, 30, paint);

		//drawOval为画椭圆,     drawArc为画弧线,   drawPath为画自由路线
		Path path = new Path();
		path.moveTo(100, 100);//移动绘制点
		path.lineTo(100, 200);
		path.lineTo(150, 200);
		path.close();  //将路径自动封闭
		paint.setColor(Color.GREEN);
		canvas.drawPath(path, paint);

		//画文字
		paint.setStrokeWidth(1);
		paint.setColor(Color.RED);
		canvas.drawText("hello game!", 100, 100, paint);//drawTextOnPath沿着路径来画文字
		canvas.drawTextOnPath(
				"aaaaaaaaaabbbbbaaaaaaaaaaaaaaaccccccaaaaaaaaaaaaaa", path,
				0, 0, paint);

		//往画布上画图片
		//1.指定图片的坐标
		canvas.drawBitmap(bitmap1, 0, 0, paint);
		//2.将原图的一部分截取出来, 画到指定的地方. 这个在画一张连着的图时用
		Rect src = new Rect(0, 0, 25, 25);
		Rect dst = new Rect(200, 200, 300, 300);
		canvas.drawBitmap(bitmap1, src, dst, paint);
		//3.第二个参数是来对图片进行修饰的, 移动、缩放、旋转、倾斜等操作. 有多个set方法时, 只有最后一个起效. post则是后叠加, pre前执行
		//在做游戏中可以只做一张图, 然后用matrix来旋转图片显示. 也可以做很多张图, 直接画.
		matrix.setTranslate(100, 0);	//平移
		matrix.setRotate(30);			//旋转30度, 
		matrix.setRotate(45, 0, 0);		//后两个参数是旋转原点. 后面几个后面也可加旋转点
		matrix.setScale(1, 2);			//改变大小, x抽是1倍不变, y抽是2倍
		matrix.setSkew(1, 0);			//倾斜, x抽倾斜一倍
		matrix.postTranslate(0, 100);	//post则是在set上添加
		matrix.preSkew(0, 1);
		canvas.drawBitmap(bitmap1, matrix, paint);
	}
}

以上代码注释中已经写出了绘制一些基本图形的方法,当然在游戏中,最重要的就是绘图了。详见上面的注释。


3. 最后显示View。

只需在主Activity中如下写:

	public void onCreate(Bundle savedInstanceState)
	{
		super.onCreate(savedInstanceState);

		GameView gameView = new GameView(this);
		setContentView(gameView);

	}

View最基础教程。转载请注明出处: http://blog.csdn.net/xn4545945


### RK3588平台NPU调用方法 #### 创建和初始化NPU环境 为了在RK3588平台上成功调用NPU进行神经网络推理或加速,首先需要确保设备已正确配置并加载了相应的驱动程序。Rockchip的官方固件通常已经预装了RKNPU驱动[^3]。 一旦确认硬件准备就绪,可以通过以下方式创建和初始化NPU环境: ```cpp #include "rknn_api.h" // 初始化模型路径和其他参数 const char* model_path = "./model.rknn"; int ret; rknn_context ctx; ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("Failed to initialize rknn context\n"); } ``` 这段代码展示了如何使用`rknn_api.h`库来初始化一个RKNN上下文对象,这一步骤对于后续的操作至关重要[^2]。 #### 加载和编译模型 接下来,在实际运行之前还需要加载预先训练好的神经网络模型文件(通常是`.rknn`格式)。此过程涉及读取模型二进制数据,并将其传递给RKNN API以便内部处理和优化。 ```cpp // 假设模型已经被转换成 .rknn 文件格式 char *model_data; // 模型的数据指针 size_t model_size; // 模型大小 FILE *fp = fopen(model_path, "rb+"); fseek(fp, 0L, SEEK_END); model_size = ftell(fp); rewind(fp); model_data = (char *)malloc(sizeof(char)*model_size); fread(model_data, sizeof(unsigned char), model_size, fp); fclose(fp); // 将模型数据传入RKNN API ret = rknn_load_rknn(ctx, &model_data, &model_size); free(model_data); if(ret != 0){ printf("Load Model Failed!\n"); } else{ printf("Model Loaded Successfully.\n"); } ``` 这里说明了从磁盘读取模型文件的具体操作流程,并通过API函数将这些信息提交给了底层框架去解析和设置好用于推断所需的资源[^1]。 #### 执行前向传播计算 当一切准备工作完成后就可以开始真正的预测工作——即让NPU执行一次完整的前向传播运算。这个阶段主要是构建输入张量、启动异步任务以及收集输出结果。 ```cpp float input_tensor[INPUT_SIZE]; // 输入特征图数组 float output_tensors[MAX_OUTPUTS][OUTPUT_SIZE]; // 输出特征图数组 struct rknn_input inputs[] = {{input_tensor}}; struct rknn_output outputs[MAX_OUTPUTS]; for(int i=0;i<NUM_ITERATIONS;++i){ memset(inputs, 0 ,sizeof(struct rknn_input)); memcpy(input_tensor, inputData[i], INPUT_SIZE*sizeof(float)); // 启动推理任务 ret = rknn_run(ctx, nullptr); if(ret!=0){ printf("Inference failed at iteration %d", i); break; } // 获取输出结果 for(size_t j=0;j<num_outputs;++j){ struct rknn_output& out = outputs[j]; size_t bufSize = OUTPUT_SIZE * sizeof(float); void* buffer = malloc(bufSize); ret = rknn_get_output(ctx, j, &out.datatype, &buffer, &bufSize, false); if(!ret && buffer){ memcpy(output_tensors[j], buffer, bufSize); free(buffer); } } } printf("All iterations completed successfully."); ``` 上述片段体现了典型的基于RKNN SDK的应用场景:先准备好待测样本作为输入;接着触发内核中的计算逻辑;最后获取到经过变换后的响应值供下一步分析所用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值