64匹马,8个赛道,找出跑得最快的4匹马,5场就够了

本文介绍了一种在64匹马中找出最快4匹的方法,仅需5场比赛。首先通过4场初赛选出16强,再进行决赛决出最终4强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

64匹马,8个赛道,找出跑得最快的4匹马,至少比赛几场?

一共需要5场

第一步:前4场每一场跑16匹马,每条跑道中点放两匹马屁股对屁股,取最先跑完的前四名,4场比赛下来就是前十六强

第二步:第五场十六强同样的方式在跑一次取前四

 

 

这是一个经典的算法题,目的是在有限的比赛次数下找到最快的四马。我们有64马、8赛道,并且每次只能赛完一组后再安排下一组比赛。下面我们逐步分析最优解法。 --- ### 分析与解答 #### 第一步:初步筛选 将所有马分成 **8 组**(每组 8 ),分别进行比赛。 这需要 **8比赛**。赛后记录每组的排名情况。 此时我们可以得到每个小组内的相对快慢顺序,但不知道跨组的具体速度关系。 #### 第二步:确定“最快的一批” 从第一步中选出各组的第一名共 **8 马** 进行第9比赛。这比赛会给出整体最快速度的排序前几名所在的初始范围。 例如: - 若 `A1 > B1 > C1 > D1 ...` 表示 A 组第一名胜过其他组第一名,则说明 A 组第一名可能是全局第一。 - 同理推导出第二至第四名可能来自哪些组合。 意:只有部分几组里的前列才有机会进入最终候选名单! #### 第三步:缩小范围再次竞争 基于上述结果进一步减少参赛者数量。因为已经明确某些组别不可能贡献额外更快成员了,所以可以直接排除掉那些无关紧要的个体。接下来只需再组织少数关键选手间最后一轮较量即可得出确切结论。 假设最后发现只需要比较约20余左右潜在优胜者,则设计新一轮合理赛事数目不会超过5左右。 综上所述总共不超过 **14 比赛** 就能锁定答案。 --- ### Python模拟思路 虽然理论上可以计算最少比赛次数,但在实际编码时为了保证准确性可能会采用更多的比赛回合数来进行验证。下面提供一种简化的逻辑框架供参考: ```python import heapq def find_top_k(horses, tracks=8, k=4): rounds = [] # Step 1: Initial races to get group rankings. groups = [horses[i:i + tracks] for i in range(0, len(horses), tracks)] for g in groups: sorted_group = sorted(g) # Assume sort by speed (lower is faster). rounds.append(sorted_group) # Step 2: Race the winners of each initial race. winners = [group[0] for group in rounds] overall_winner_order = sorted(winners)[:k] candidates = set() for winner_ranking in overall_winner_order: idx = winners.index(winner_ranking) top_candidates_from_group = rounds[idx][:k+1] # Include few more just safe side candidates.update(top_candidates_from_group) final_round_result = sorted(list(candidates))[:k] return final_round_result # Example usage with dummy data representing horse speeds. dummy_horses = list(range(64)) # Lower number means faster here. top_4_fastest = find_top_k(dummy_horses, tracks=8, k=4) print("Top 4 fastest horses:", top_4_fastest) ``` 此代码片段仅作为示意用途,在真实景下还需要补充更多细节才能达到理想效果。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值