跟李沐学AI(自学笔记)| 05-07 相关数学理论

目录:pytorch / chapter_preliminaries / index.ipynb

下载到本地的目录:D:\研一下\DL\d2l-zh\pytorch

写在前面:笔记是我在听课过程中不了解的或者我认为比较重要的地方,暂时不做整体性和系统性的框架和梳理。

线性代数

mean()只能对浮点数求平均,如果报错的话将数据类型转换为浮点数即可。同样的mv,mm也只能对浮点数进行运算。

A.mean(dtype=torch.float32)

降维求和:对哪个轴求和相当于这个轴在输出形状中消失

A_sum_axis0 = A.sum(axis=0)

非降维求和

sum_A = A.sum(axis=1, keepdims=True)

矩阵计算

导数 - 偏导数 - 梯度

需要明白标量、向量、矩阵求导后的形状变化,x在分母上

自动求导

有两种模式:正向累积和反向传递,其中反向传递更加常用。

x.requires_grad_(True)  # 等价于x=torch.arange(4.0,requires_grad=True)
x.grad  # 默认值是None

y.backward() #调用反向传播函数来自动计算y关于x每个分量的梯度
x.grad

在默认情况下,PyTorch会累积梯度,下一次计算之前需要需要清除之前的值。

x.grad.zero_()

在本节中还讲到了分离计算和 Python控制流的梯度计算,目前还不太理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值