Pandas 教程之四 : Python Pandas Series

Python Pandas Series

Pandas Series 是一个一维标记数组,能够保存任何类型的数据(整数、字符串、浮点数、python 对象等)。

Pandas Series示例

# import pandas as pd
import pandas as pd
 
# simple array
data = [1, 2, 3, 4]
 
ser = pd.Series(data)
print(ser)


输出

0    1
1    2
2    3
3    4
dtype: int64

轴标签统称为 索引。Pandas Series 不过是 Excel 表中的一列。

标签不必是唯一的,但必须是可哈希类型。该对象支持整数和基于标签的索引,并提供大量用于执行涉及索引的操作的方法。

Python Pandas Series

我们将简要了解可以在 Pandas Series 上执行的所有基本操作:

  • 创建一个Series
  • 访问 Series 的元素
  • 索引和选择序列数据
  • Series上的二元运算
  • Series上的转换操作

创建 Pandas Series

在现实世界中,将通过从现有存储中加载数据集来创建 Pandas Series,存储可以是 SQL 数据库、CSV 文件和 Excel 文件。可以从列表、字典和标量值等创建 Pandas Series。可以通过不同的方式创建Series,以下是我们创建Series的一些方法:

从数组创建一个Series 为了从数组创建一个Series,我们必须导入一个 numpy 模块并使用 array() 函数。

Python

# import pandas as pd
import pandas as pd
 
# import numpy as np
import numpy as np
 
# simple array
data = np.array(['g','e','e','k','s'])
 
ser = pd.Series(data)
print(ser)


输出

0    g
1    e
2    e
3    k
4    s
dtype: object

从列表创建Series
为了从列表创建Series,我们必须首先创建一个列表,然后才能从列表创建Series。

Python

import pandas as pd
 
# a simple list
list = ['g', 'e', 'e', 'k', 's']
  
# create series form a list
ser = pd.Series(list)
print(ser)


输出

0    g
1    e
2    e
3    k
4    s
dtype: object

访问 Series 的元素

我们可以通过两种方式访问​​Series元素,它们是:

  • 通过位置访问Series中的元素
  • 使用标签(索引)访问元素

使用位置访问Series中的元素: 要访问Series元素,请参考索引号。使用索引运算符 [ ] 访问Series中的元素。索引必须是整数。为了访问Series中的多个元素,我们使用切片操作。

访问 Series 的前 5 个元素。

Python

# import pandas and numpy 
import pandas as pd
import numpy as np
 
# creating simple array
data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
ser = pd.Series(data)
  
#retrieve the first element
print(ser[:5])


输出

0    g
1    e
2    e
3    k
4    s
dtype: object

使用标签(索引)访问元素:
为了访问Series中的元素,我们必须通过索引标签设置值。Series就像一本固定大小的字典,您可以通过索引标签获取和设置值。

使用索引标签访问单个元素。

Python

# import pandas and numpy 
import pandas as pd
import numpy as np
 
# creating simple array
data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
ser = pd.Series(data,index=[10,11,12,13,14,15,16,17,18,19,20,21,22])
  
  
# accessing a element using index element
print(ser[16])


输出

o

索引和选择序列数据

pandas 中的索引意味着简单地从Series中选择特定数据。索引可能意味着选择所有数据,或选择特定列中的部分数据。索引也可以称为 子集选择

使用索引运算符对 Series 进行索引 [] :索引运算符用于引用对象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潜洋

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值