Pandas教程之十九:处理 Pandas 中的缺失数据

处理 Pandas 中的缺失数据

在 Pandas 中,缺失值用None 或 NaN表示,这可能是由于未收集数据或条目不完整而发生的。让我们探索如何检测、处理和填充 DataFrame 中的缺失值,以确保准确的分析。

目录

  • 检查 Pandas DataFrame 中的缺失值
  • 填充 Pandas 中的缺失值
  • 删除 Pandas 中的缺失值

检查 Pandas DataFrame 中的缺失值

为了识别和处理缺失值,Pandas 提供了两个有用的函数:isnull()和notnull()。这些函数有助于检测某个值是否为NaN,从而更容易清理和预处理 DataFrame 或 Series 中的数据。

1. 使用 isnull() 检查缺失值

isnull()返回布尔值的 DataFrame,其中True表示缺失数据 ( NaN )。当您想要定位和处理数据集中的缺失数据时,这很有用。

示例 1:检测 DataFrame 中的缺失值

Python

# Importing pandas and numpy
import pandas as pd
import numpy as np

# Sample DataFrame with missing values
data = {'First Score': [100, 90, np.nan, 95],
        'Second Score': [30, 45, 56, np.nan],
        'Third Score': [np.nan, 40, 80, 98]}

df = pd.DataFrame(data)

# Checking for missing values using isnull()
missing_values = df.isnull()

print(missing_values)

输出:

示例 2:根据缺失值过滤数据

在本例中,isnull()函数应用于“性别”列,以筛选和显示缺少性别信息的行。

Python

import pandas as pd

data = pd.read_csv("employees.csv")
bool_series = pd.isnull(data["Gender"])
missing_gender_data = data[bool_series]
print(missing_gender_data)

输出:

使用 notnull() 检查缺失值

notnull()返回布尔值的 DataFrame,其中 True 表示非缺失数据。当您想关注包含有效、非缺失数据的行时,此函数非常有用。

示例 3:检测 DataFrame 中的非缺失值

Python

# Importing pandas and numpy
import pandas as pd
import numpy as np

# Sample DataFrame with missing values
data = {'Firs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潜洋

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值