anaconda配置yolov5

之前在anaconda配置过yolov5是否需要卸载原有环境?

如果之前配置过YOLOv5环境但失败了,建议先清理原有环境(避免依赖冲突),操作非常简单,下面会一步一步教你。

详细操作步骤(全程使用Anaconda,小白友好)

第一步:打开Anaconda Prompt

按下"Win键",在开始菜单中找到"Anaconda3"文件夹,点击打开"Anaconda Prompt (Anaconda3)(如果找不到,直接在开始菜单搜索“Anaconda Prompt”)

第二步:删除原有YOLOv5相关环境(如果有的话)

1. 先查看已有的虚拟环境,输入命令

命令:conda env list

(会列出所有环境,比如可能有"yolov5"、"yolo"之类的环境名)

2.如果找到之前创建的YOLOv5相关环境(假设名为"yolov5_old"),删除它:

命令:conda remove -n yolov5_old --all

(输入后会提示是否确认,输入"y"回车即可)

3. 如果不确定环境名,或想删除所有可疑环境,重复步骤1和2即可。

第三步:创建新的虚拟环境

1.输入以下命令,创建一个名为"yolov5"的新环境,指定Python版本为3.8(YOLOv5推荐版本):

命令:conda create -n yolov5 python=3.8

2. 提示“Proceed ([y]/n)?”时,输入"y"回车,等待环境创建完成(可能需要几分钟,取决于网络)。

第四步:激活新环境

创建完成后,输入以下命令激活环境:

命令:conda activate yolov5

(成功后,命令行前面会显示"(yolov5)",表示当前在这个环境中)

第五步:安装PyTorch(核心依赖)

YOLOv5需要PyTorch框架,根据你的电脑是否有NVIDIA显卡选择安装方式:

情况1:没有NVIDIA显卡(用CPU运行,速度较慢)

输入命令:

命令:conda install pytorch torchvision torchaudio cpuonly -c pytorch

(提示确认时输入"y",等待安装完成)

情况2:有NVIDIA显卡(推荐,需要先安装显卡驱动)

先确认显卡支持CUDA(GTX 1050及以上都可以)

输入命令(安装支持CUDA 11.3的版本,兼容性好):

命令:conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

(提示确认时输入"y",安装时间较长,耐心等待)

第六步:安装Git(用于下载YOLOv5代码)

如果你电脑上没有Git,先在Anaconda Prompt中输入:

命令:conda install git

(提示确认时输入"y",安装Git)

第七步:下载YOLOv5代码

1. 先选择一个存放代码的文件夹(比如“文档”文件夹),在命令行中切换到该文件夹:

(例如切换到“文档”文件夹,输入下面的命令后回车)

命令:cd Documents

2.下载YOLOv5代码仓库,输入:

命令:git clone https://github.com/ultralytics/yolov5.git

(如果下载失败,可能是网络问题,多试几次;或手动到[YOLOv5官网](https://github.com/ultralytics/yolov5)下载ZIP包,解压到文档文件夹)

3.进入下载好的yolov5文件夹:

命令:cd yolov5

第八步:安装YOLOv5所需的其他依赖

1. 输入命令安装依赖(基于requirements.txt文件):

命令:pip install -r requirements.txt

2. 如果出现某个包安装失败(比如"pycocotools"),单独安装:

命令:pip install pycocotools

(如果还是失败,尝试用conda安装:"conda install -c conda-forge pycocotools")

第九步:测试环境是否配置成功

3. 输入以下命令,运行YOLOv5的默认检测程序(会自动下载预训练权重,检测示例图片):

命令python detect.py --source data/images/zidane.jpg --weights yolov5s.pt

4. 成功的话,会在"yolov5/runs/detect/exp"文件夹中生成检测后的图片(zidane.jpg),打开可以看到检测结果(人物、马等被框出)。

常见问题解决

1. 如果提示“找不到python命令”:检查是否激活了"yolov5"环境(命令行前是否有"(yolov5)")。

2. 如果下载速度慢:可以配置国内镜像(比如清华镜像)

3. 如果运行时提示缺少某个包:用"pip install 包名"安装即可。

按照以上步骤操作,99%的情况都能成功配置!如果某一步报错,把错误信息发给我,我再帮你解决~

如何训练自己的模型

训练自己的图片(自定义数据集)是YOLOv5的核心应用之一,步骤稍微复杂但遵循固定流程,下面我会像教小白一样一步一步带你操作:

一、准备工作:明确目标

你需要:

自己的图片(比如要检测“猫”和“狗”,就收集100-500张包含猫、狗的图片,越多训练效果越好)

标注工具(给图片中的物体画框并标记类别,推荐用"LabelImg")

二、安装标注工具LabelImg(给图片打标签)

1. 打开Anaconda Prompt,确保激活了"yolov5"环境(命令行前有"(yolov5)")

2. 输入以下命令安装LabelImg:

命令:pip install labelimg

3. 安装完成后,输入"labelimg"并回车,会弹出标注工具窗口。

三、整理图片和标注文件(关键!格式必须对)

1. 创建数据集文件夹结构

在电脑上新建一个文件夹(比如命名为"mydataset"),里面必须包含以下4个文件夹,结构如下:

mydataset/

├─ images/ # 存放所有图片

│ ├─ train/ # 训练用图片(占80%,比如80张)

│ └─ val/ # 验证用图片(占20%,比如20张)

└─ labels/ # 存放标注文件(自动生成,与图片一一对应)

├─ train/ # 训练图片对应的标注文件

└─ val/ # 验证图片对应的标注文件

示例:把80张猫、狗的图片放进"images/train",20张放进"images/val"。

2. 用LabelImg标注图片(生成标签文件)

(1). 在LabelImg窗口中,点击左上角"Open Dir",选择"mydataset/images/train"(先标注训练图片)

(2). 点击左侧"Change Save Dir",选择"mydataset/labels/train"(标注文件会保存在这里)

(3). 标注步骤:

按"W"键调出画框工具,用鼠标框住图片中的物体(比如一只猫)

弹出输入框,输入类别名称(比如“cat”,必须是英文,且和后续配置一致)

点击"OK",一张图中的所有物体都标注完后,按"Ctrl+S"保存,会自动生成一个和图片同名的"txt"文件(比如"cat1.jpg"对应"cat1.txt")

按"D"键切换到下一张图,重复标注,直到所有训练图标注完成

4. 同样的方法,标注"images/val"里的验证图片,标注文件保存到"labels/val"。

四、检查标注文件格式(避免踩坑)

每张图片的"txt"标注文件格式必须是YOLO格式,内容如下(以“cat”和“dog”为例):

类别ID:比如“cat”设为0,“dog”设为1(后续配置文件要对应)

如果标注后没有生成"txt"文件,检查是否选择了正确的保存目录。

、创建数据集配置文件(告诉YOLOv5你的数据在哪)

1. 进入"yolov5"文件夹(你的路径是"C:\Users\acer\yolov5"),找到"data"文件夹,右键新建一个文本文件,命名为"mydata.yaml"(必须是.yaml格式)

2. 用记事本打开"mydata.yaml",输入以下内容(根据你的情况修改):

路径说明:如果"mydataset"放在"yolov5"文件夹外面,比如"C:\Users\acer\mydataset",则路径改为"../../mydataset/images/train"(根据实际位置调整,错误会导致找不到数据)

、选择预训练模型(推荐迁移学习,训练更快)

YOLOv5提供不同大小的预训练模型,小白推荐用"yolov5s.pt"(小模型,训练快,适合入门):

模型会自动下载,无需手动操作。如果下载失败,手动下载后放进"yolov5"文件夹:

下载地址:https://github.com/ultralytics/yolov5/releases/tag/v7.0(找"yolov5s.pt")

、开始训练!(执行训练命令)

1. 在Anaconda Prompt中,确保已激活"yolov5"环境,并且进入"yolov5"文件夹(路径:"C:\Users\用户\yolov5")

2. 输入训练命令(根据你的情况修改参数):

命令:python train.py --data data/mydata.yaml --weights yolov5s.pt --epochs 50 --batch-size 8 --img 640

参数解释:

"--data data/mydata.yaml":指定你的数据集配置文件

"--weights yolov5s.pt":用预训练模型迁移学习(从头训练用"--weights """)

"--epochs 50":训练轮次(50次足够入门,越多越准但越慢)

"--batch-size 8":每次训练用8张图(电脑内存小就改小,比如4;内存大改大,比如16)

"--img 640":图片 resize 到640x640(保持默认即可)

、训练过程中会看到什么?

命令行会显示训练进度,包括"loss"(损失值,越小越好)、"mAP"(准确率,越大越好)

训练生成的文件会保存在"yolov5/runs/train/exp"文件夹(每次训练会生成新的"exp1"、"exp2"等)

重点看"exp/weights/best.pt"(训练好的最佳模型,后面检测就用它)

、用自己训练的模型检测图片

训练完成后,输入以下命令,用你的模型检测新图片:

命令:python detect.py --source 你的图片路径.jpg --weights runs/train/exp/weights/best.pt

示例:检测"mydataset/images/val/dog1.jpg"

命令:python detect.py --source ../mydataset/images/val/dog1.jpg --weights runs/train/exp/weights/best.pt

结果会保存在"yolov5/runs/detect/exp"文件夹,打开图片就能看到你的模型检测出的“cat”或“dog”啦!

常见问题解决:

1. 训练时报“找不到图片”:检查"mydata.yaml"中的路径是否正确(用相对路径,多试"../"调整层级)

2. 标注后模型不识别:检查"names"列表和标注的类别名称是否一致(必须全英文,区分大小写)

3. 训练中断/内存不足:减小"--batch-size"(比如改到2)

4. 效果差:增加图片数量(至少100张/类)、延长训练轮次("--epochs 100")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值