Apache Avro简介与操作

Apache Avro是一个数据序列化系统,提供丰富的数据结构、紧凑快速的二进制格式、文件存储和RPC系统。它依赖于JSON格式的schemas,允许跨语言交互和数据持久化。在使用Avro时,需要下载相关JAR包,创建schema文件,然后可以进行代码生成或不生成代码的序列化/反序列化操作。与其他序列化系统相比,Avro的特点包括动态类型和无标签数据,简化了处理数据的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文根据Apache Avro官方文档所写,http://avro.apache.org/docs/current/index.html.

一、Avro简介


avro是一个数据序列化系统
提供了:

  • 丰富的数据结构
  • 紧凑的,快速的,二进制的数据格式
  • 一种文件格式,用于存储持久化数据
  • 远程过程调用系统(RPC)
  • 和动态语言的简单交互。并不需要为数据文件读写产生代码,也不需要使用或实现RPC协议。代码生成是一种优化方式,但是只对于静态语言有意义。

二、Schemas


所谓shemas,就是一种描述文件,能够说清楚你的对象的描述文件。可能有你对象里面有什么,他们之间的逻辑关系,数据的统计信息。比如说对人的描述包括身高、体重、三维、性别等,只要他的格式确定,就可以叫做shemas。

Avro也是依赖于schemas的(为了夸语言,也为了持久化,总要有二进制数据解析的指导)。当读取Avro数据的时候需要使用到schemas, 当写数据的时候也需要有schema的指导。这样就允许了每个数据都没有前缀开销(因为可以用schema来理解数据),这就会使得序列化很快而且数据会比较小。

当把Avro数据存储到文件的时候,会把他的schema数据一起存储,这样数据就可以被接下来的任意程序使用了。如果程序希望用其他的schema来读取数据,是很简单的,因为你可以同个比较两个schema来看能不能读取数据

当Avro用于RPC的时候,客户端和服务端可以在连接握手的阶段进行schema交换。(这种方式是可以被优化的,因为对于很多schema来说,是没有schema的交换的)由于两边都有对方完整的schema存在了,所有可以比较出同名域、缺少的域、多余的域。

avro的schema是用json定义的。这样有json包的语言就会比较容易实现了。

三、Avro的使用


1.下载相关JAR包

avro-1.8.1.jar (下载链接:https://mirrors.tuna.tsinghua.edu.cn/apache/avro/avro-1.8.1/java/
avro-tools-1.8.1.jar
jackson-core-asl-1.9.13.jar(下载链接:)
jackson-mapper-asl-1.9.13.jar
下载后将avro-1.8.1.jar and 和 Jackson jars 放到项目的类路径下 (avro-tools.jar 将被用于代码生成).

2.创建schema文件user.avsc
文件为Json格式:

{"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
     {"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值