隐私计算技术在银行数智化运营中的应用

一、隐私计算及算法介绍

隐私计算技术则是一种创新的数据价值挖掘体系,该技术通过数据方、计算方和结果方的独立运作,有效地解决了数据流通与隐私保护之间的冲突,打破了数据孤岛现象,真正实现了数据的“可用不可见”。

隐私计算技术以密码学为基础,依托可信硬件设施,融合了多方安全计算(MPC)、可信联邦学习(TFL)和可信执行环境(TEE)等多种先进技术,参与隐私计算的各个机构能够确保其数据明文不出域(即不离开其控制范围),通过多方数据的协同应用和联合计算,实现了数据所有权与使用权的有效分离。这不仅确保了大数据计算过程中的原始数据安全、计算结果安全,还保障了计算逻辑的安全。通过这种方式,隐私计算技术达成了数据“可用不可见”的目标,巧妙地解决了既要利用数据又需保护数据的难题,促进了数据价值的有效转化和释放。

(一)多方安全计算(MPC)

多方安全计算是一种允许多个参与方在不泄露各自隐私信息的前提下,共同计算某个函数的技术。其核心思想是将数据分散存储在多个参与方之间,通过密码学技术实现数据的安全计算和共享。MPC为数据安全和隐私保护提供了全新的思路和方法,在云计算、大数据、人工智能等领域具有广泛的应用前景。

多方安全计算技术能够满足人们利用隐私数据进行保密计算的需求,有效解决数据的“保密性”和“共享性”之间的矛盾。多方安全计算包括多个技术分支,主要用到的技术包括秘密共享、不经意传输及混淆电路等等。

1、秘密共享

秘密共享(Secret Sharing)是一种允许将一个秘密(如加密密钥或重要信息)分割成多个部分(称为份额)的密码学方法。这些份额分发给多个参与者,只有当一定数量的份额集合在一起时,才能重新构造出原始的秘密。秘密共享的目的是确保信息的安全性和可恢复性,即使其中一些份额丢失或被破坏。

图1. 秘密共享原理图

图片

2、不经意传输

不经意传输(Oblivious Transfer,OT)是一种可保护隐私的双方通信协议,消息发送者从一些待发送的消息中发送某一条给接收者,但并不知道接收者具体收到了哪一条消息。不经意传输协议是一个两方安全计算协议,协议使得接收方除选取的内容外,无法获取剩余数据,并且发送方也无从知道被选取的内容。

图2. 不经意传输原理图

3、混淆电路

混淆电路(Circuit Obfuscation)是一种方法,其中一方(构建方)构建一个加密或“混淆”的电路版本,这个电路实现了某种特定的计算任务(如逻辑运算)。这个混淆的电路被发送给另一方(评估方),后者可以使用它来计算某个函数,但无法了解电路中的具体数据或逻辑。

图3. 混淆电路原理图

图片

(三)可信执行环境(TEE)

可信执行环境是一种安全的计算环境,通过硬件隔离和加密保护,确保敏感数据和代码的安全性和隐私性。TEE通常由安全处理器和TEE软件组成,可以创建一个受保护的执行环境,使得恶意软件无法获取或篡改TEE中的数据和代码。TEE为隐私计算提供了可信的运行环境,确保了计算过程的安全性和隐私性。

(四)安全隐私求交(PSI)

安全隐私求交是一种允许两个或多个参与方在不泄露各自数据集的情况下,找出数据集中交集的技术。它基于密码学原理,通过加密和比对操作,实现数据的隐私保护和交集计算。PSI在隐私保护数据挖掘、生物信息学等领域具有广泛的应用价值。

(五)隐匿查询(PIR)

联邦学习是一种利用分散数据训练机器学习模型的流行技术。它允许各个参与方在本地训练模型,然后共享模型参数或梯度信息,从而在不直接共享原始数据的情况下,实现全局模型的优化。联邦学习不仅保护了数据的隐私性,还提高了模型的泛化能力和鲁棒性。

图4. 联邦学习原理

二、隐私计算技术在银行数字化运营的应用

随着秋风渐起,冬日的寒意也悄然逼近,这两个季节交替之时,气温多变,空气干燥,是许多疾病的高发期。在通过科学的生活方式和预防措施,守护您和家人的健康。

(一)隐私计算赋能个性化营销策略

在营销领域,“广而告之”的活动往往收效甚微,银行业更追求“千人千面”的精准营销策略,即为每位客户提供定制化的服务方案。在快捷支付业务中,银行端提供客户性别、年龄、AUM等标签信息,第三方支付平台提供三方交易频次、日常购物品类、上网手机品牌型号等消费者偏好标签,加密实体对齐后调用业务模型进行联邦学习,在计算过程中银行与数据合作方使用同一隐私计算平台,通过专线进行模型的参数同步与梯度传输,双方的数据不出域,进一步保证了数据安全性。外部数据的引入不仅补齐了行内数据维度的短板,而且构建了更精准的用户画像从而更有针对性地进行差异化营销,从而提升营销效率和客户体验。

(二)隐私计算激活潜力用户

在线上数字化运营中,吸引并培育新用户是用户生命周期管理中不可或缺的关键环节。在这一过程中,银行往往面临一系列挑战:如何识别潜在的目标用户群体?这些潜在用户具备哪些显著的特征?市场上究竟还潜藏着多少未被发掘的用户?如何精确地定位这些潜在用户并有效地与他们建立联系?隐私计算技术凭借其对第三方数据源的深度整合,为银行提供了一种全新的解决方案,以实现对潜在用户的精准定位和有效触达。

目前银行业在逐步探索利用第三方数据源的乘用车数据与行内客户数据相融合,通过隐私计算技术,构建了一个纵向联邦学习的线索评级模型,其中第三方数据源提供了包括汽车交易、车险购买、收入水平以及购车类软件使用情况在内的多种标签。这一模型能够对每一个新进入私域、标签信息尚不完整的线索进行价值评估,并将其分解为速度和收益两个维度的评分。其中,速度分值反映了线索购车的迫切程度,而收益分值则体现了线索的购买力。通过这样的评分机制,银行能够确定对客户的触达和跟进的优先顺序,从而实现更加精准和高效的用户增长策略。

(三)隐私计算助力反欺诈数字化转型升级

随着大数据、人工智能、云计算、区块链等尖端技术进步,欺诈产业链也在不断升级,使得金融机构在所面临的反欺诈挑战变得愈发复杂和严峻。面对以上痛点,目前金融机构在逐步探索联邦学习技术在反欺诈领域的应用,银行通过整合账户信息、交易对手等关键数据,并与通信运营商建立合作关系,引入了客户的通信行为数据。这些数据包括但不限于:客户所属地区是否为诈骗案件频发区域,客户对即时通讯类应用程序的访问频率是否异常低,以及客户被叫通话的频率是否异常少;同时,还关注客户是否存在频繁的跨地区或跨国通话行为,尤其是夜间的跨境通话情况等。借助隐私计算技术,银行构建了一个用于识别涉赌洗钱账户的客群模型。这一模型能够迅速筛选出可疑账户名单,显著提高了反洗钱工作的甄别效率和响应速度。通过这种创新的数据整合与分析方法,银行不仅强化了自身的风险管理能力,也为金融行业的安全与稳定贡献了重要力量。

三、隐私计算对银行业影响

(一)隐私计算是促进银行数据要素流通的关键手段

数据要素和数据的最大区别,是其通过市场化手段从手工作坊进入社会化大生产,在各行各业广泛流通起来。并且,这种流通应是双向的,即作为拥有庞大客户群体、众多产品种类的银行业,其数据要素不仅要“引进来”,还要“走出去”。当前主要由银行引入外部数据,银行主动“走出去”、用活数据资产的情形不多,主要原因是出于对安全合规风险的考量。银行数据涉及个人隐私信息、商业银行机密、国家金融安全等重要信息,在缺乏明确合规指向情况下,银行对数据要素“走出去”持审慎态度。数据要素流通过程中,须知隐私计算技术不能解决所有的安全问题,还要监管部门积极引导,设计包容审慎的试错容错机制,推动国有大行等特定主体在信贷违规资金使用、反欺诈、反洗钱领域等进行数据交易试运行,探索金融数据交易定价运营和风控模式,全面降低银行数据流通的安全风险,提升银行数据流通的合规信心。

(二)隐私计算的作用重在支撑构建数据流通基础设施

和其他要素流通需要基础设施一样,数据要素流通也需要广泛构建基础设施。从可预见的情况来看,数据流通基础设施应包含企业集团级、行业级、跨行业、跨国境等四种不同层次。在银行业系统建设历程中,普遍趋势是从搭建多个独立、分散的单一系统逐步走向构建高效通用、横向扩展的基础设施。数据流通基础设施可充分汲取上述经验,以通用型隐私计算平台为目标,“互联互通”按阶段规划实现,着重构建通用性、可扩展性、互联互通等隐私计算能力。在此基础上,可实现既能支持银行特定场景下的特定需求(如机器学习模型训练),又能满足银行不同业务条线、客户全生命周期管理诉求(如经营分析、决策支撑、风控增强、营销促活等)以及能够响应银行业务、资源实际现状,动态调整数据合作方数量、数据资源(包括算法、模型、参数)、硬件资源等。

(三)隐私计算是协调推进银行数字化转型战略布局的关键环节

工商银行以国家数据要素化战略为指导,积极推动基于隐私计算的数据流通基础设施规划布局,赋能推动新时代数字化转型。一是规划推动数据流通的顶层设计,完善技术应用制度规范及管理保障机制。依托技术委员会,审议隐私计算应用有关规划、重大事项决策等;建立隐私计算基础技术平台研发队伍,开展配套业务功能的研发和落地推广;依托企业架构管理团队,组织推动隐私计算体系建设和管理,明确应用规范和风险防范预案、响应机制和应对措施等。二是积极布局规划企业级隐私计算技术平台体系。综合各种技术优势,打造了涵盖多方安全计算平台、联邦学习平台、可信计算平台的技术体系架构,发挥支撑数据要素流通的基础设施作用。三是结合行业共性瓶颈问题,开展典型场景先行先试。如将多方安全计算与区块链深度融合,在保护商户隐私的前提下开展跨场景联合营销;利用多方安全计算、联邦学习进行企业贷中风险监测、贷后资金流向追踪、涉赌洗钱账户客群识别、保护隐私的人脸识别应用、托管资金监管等场景探索,有序推进隐私计算在各业务领域创新应用。

四、案例分析:建设银行隐私计算实践

(一)隐私计算早期探索(2020-2021)

1、隐私计算技术应用背景

2020年国家战略发展要求和企业自身的发展需求促成了隐私计算技术的出现。隐私计算为建行主要带来了三点好处。

第一点隐私计算是一个创新机制,实现数据不动价值动,该方式实际帮助建行提高了数据处理的安全性。因为联合建模过程中,明文数据要出域,因此数据在行内经历相对比较繁琐的审批过程,通过隐私计算避免这种事情发生,有助于提高建设银行数据处理的安全性。

第二点是联合数据应用遵循最小必要价值,避免过度使用个人信息,隐私计算通过对算子和数据的管控,有助于实现该内容。

第三点是可以避免合作方的数据滥用,可以限定合作方对算子和数据的调用,避免合作方超出授权或者未经授权去使用建设银行的数据。

2、早期探索(建行-建信基金)

2019年开始,建设银行内部开始尝试部署FATE框架,并内部选用一些样例数据进行测试。在2020年,因发展需要,建行与建信基金子公司通过隐私计算,实现双方数据融通。总行和基金子公司各部署的一台FATE计算节点,并且利用总行跟子公司之间的核心网专线,打通双方的联通性关系。建行利用8亿多客户的1万多个标签,基金子公司利用500多个特征标签,对双方的数据进行求交,求交后构建模型。因受当时的网络专线影响,共构建5个货币类基金的精准营销模型,包含高净值、临界、流失、休眠、长尾5个客群的secureboost模型。一般来说在建行单边模型,可能选用500棵甚至上千棵树来建模,考虑计算节点配置比较弱,双方的专线带宽不是很大,选用的15-30颗树进行建模。为了进行AB test,建设银行分别构建建行单测数据模型和联邦学习模型,并对比模型效果。从技术层面上看,AUC、KS、top5%的lift联邦学习模型明显优于建行单测模型。从业务层面上看,联邦学习模型的前5%客户的客户响应率7.35%明显优于建行单测模型5.47%。该案例具有重大意义,真正实现总行第一个端到端的打通的联邦学习,从理论到实践的路径。为未来建设银行与集团内更多子公司,以及更多的外部公司去开展基于隐私计算的数据合作,积累了宝贵的实践经验。

(二)隐私计算需求井喷(2022-2023)

1、中心隐私计算框架部署

2022年,在FATE框架的基础上,建设银行引入了新的框架,包括多方安全计算框架(MPC)。之前的FATE只能做联邦学习,有了MPC后,建设银行不仅可以做联邦建模,还可以联合统计分析、匿名查询、联合计算等等。这些新技术支撑了更多的业务场景应用外部数据。

图6. 中心隐私计算框架部署

图片

2、隐私计算业务场景

2022年后,建信基金提出了更多隐私计算新需求,内部的合作单位也增加了很多,有建信人寿、建信信托、建信养老、建信财险等公司,外部也有很多合作公司,包括美团、银联、网联、移动、电信等。合作中共有四大类场景,第一类是联邦建模,第二类是安全求交,第三类是匿踪查询,第四种是安全计算。

(三)企业级隐私计算平台搭建

1、建行企业级隐私计算平台建设

2022年建设银行搭建了隐私计算场景平台,它并不是一套企业级的平台,存在三点问题:

第一个问题是性能比较差,只有几台物理机,对大数据量的隐私计算支持比较差。

第二个问题是这套平台目前只有研发环境,没有生产环境,并没有跟建设银行的调度平台,以及单笔服务的发布功能进行对接,只能通过手工触发去进行建模或预测。

第三个问题是平台中的部分流程,包括数据安全中客户隐私授权、需求项目模型管理等功能,更多依靠手工操作,相对比较粗放。

建设目标是通过打造企业级的隐私计算平台,或者称为数据共享安全计算平台,实现建设银行与外界数据可用不可见,开发更多的业务场景,激活数据价值,助力数字化业务发展。建设范围是在保护各方隐私的前提下,去实现联合查询、联合运算、联合建模等多种核心功能,支持不同机构间的数据隐私共享及不同金融场景的应用建模。建设银行最后也希望按照平台化、场景化、标准化、生态化的思路,进行技术研究、平台建设、场景落地。

2、隐私计算平台设计原则

隐私计算平台的设计原则有四点内容:

第一点是企业级架构为基础。全面整合联邦学习、多方安全计算等技术路线,支持联合查询、联合计算、联合建模、存证审计等丰富功能,支持建行集团内外部各机构快速部署,便捷使用。

第二点是价值创造为目标。在打造平台的同时,通过积极探索新的业务模式来扩展外部数据连接,解决数据供给侧和需求侧匹配的问题,推动建设机构间数据交易网络与数据共享生态,促进数据有效融通,实现业务价值。

第三点是满足监管合规要求:遵守《数据安全法》、《网络安全法》、《个人信息保护法》等法律法规,遵照上级金融监管单位的监管要求,确保业务合法合规,实现高等级数据安全。

第四点是基于隐私计算和密码学底层算法,在确保“数据不出域”的前提下,实现数据“可用不可见”,充分发掘跨机构数据在银行风控营销、监管等场景的价值。

3、隐私计算平台设计架构

建设银行隐私计算平台的整体应用架构,最底层的数据层,接入行业的各种数据源,包括内部、外部的一些数据源。算法层支持各类框架,支持各类计算范式,包括查询、运算、建模等等。服务层接入到行里面的模型管理平台、数据管理平台等。应用层支持各种应用,包括精准画像、精准获客、审批授信、智能风控等。

图7. 隐私计算平台架构

4、建行集团隐私计算未来发展方向

建行集团隐私计算的未来发展方向包括以下几方面:

一是加速落地更多数据融合应用赋能金融业务场景,加速探索行内外更多数据融合应用场景,赋能风控、营销等常见业务场景,以实现数据与金融业务场景的安全有效融合。

二是加强生态合作,与生态合作伙伴一起,共同推进如互联互通等行业生态建设。

三是持续技术投入和创新研究,依托建行量子实验室等前沿技术研究机构,持续在隐私计算领域投入技术研究力量。参与相关课题研究、标准制定、专利研发等,探索具备抗恶意攻击、抗合谋攻击、抗量子攻击的隐私计算算法。

五、银行业隐私计算应用展望

(一)以制度创新为关键,着力夯实隐私计算应用的技术基础与服务生态

目前,隐私计算处理数据,如何达到合规要求未有清晰的操作指引,这在一定程度上影响了银行应用隐私计算共享、输出数据的积极性。相关部门应加快技术安全性、场景应用等落地层面的法规、标准等“软”基础设施建设,通过制度创新解决银行隐私计算应用瓶颈。此外,需依托专业检测认证机构,建立全方位的检测认证体系,帮助银行有效识别、检验评估市场新兴隐私计算产品的安全性、通用性。在技术层面,隐私计算技术本身正处于起步阶段,其性能开销、时效限制等方面亟须持续攻关。各技术厂商应广泛借助产业联盟、论坛等隐私计算公共服务平台,推动跨领域银行业务专家、密码学人才、数据科学家之间的交流,实现破界创新和同创共赢。

(二)以隐私计算为重要抓手,加快打造商业银行良性数据生态

过去数年,银行业出现了“择数据而产”的低效资源配置状态。具体表现在部分商业银行由于在数据维度、实时性等方面不具备优势,选择与数据禀赋充沛的平台机构开展合作,“联合贷”“助贷”等业务泛滥成灾。这种利用数据优势“绑架”商业银行的模式,模糊了金融服务边界,抑制了银行在信贷资金配置和风险合规管理方面的优势。因此,在当前各项监管措施日趋明确的形势下,商业银行应以隐私计算为抓手,在安全合规前提下,主动探索与政务、运营商、新型数据交易平台的数据合作模式。更进一步,银行还可广泛探索提升数据资产化运营能力,通过内部数据对外输出打造数据银行,不断拓展数据融合与数据生态的边界,以数据要素利用推动商业银行价值创造。

(三)以互联互通为前瞻目标,探索构建银行业各层级数据流通基础设施

不同隐私计算平台间互联互通的难点在于其异构性。银行业数据流通基础设施互联互通,不是打破已建设平台在管理、技术和商业模式上的信任共识,更不是替代已有平台,而是在已有平台上叠加可管可控的跨平台功能,来实现数据流通基础设施的一种递进式扩展。可借鉴互联网互联互通的经验,不同平台间通过统一的跨域数据交换协议相互连接、组成数据流通网络,网络与网络间通过跨域数据交换协议再次组合,如此不断扩展、有机生长。可预见,未来银行业将率先建设企业级、行业级数据流通网,以点带面推动保险、证券等其他金融行业数据要素高效流通,助力数字金融整体跨越式发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值