一.题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109
二.题目解析
1.递归,超时
public int uniquePaths1(int m, int n) {
/*递归,--超时,包含大量重复的计算
* */
if(m <= 0 || n <= 0){
return 0;
}
return findByRecursion1(0,0,m,n);
}
private int findByRecursion1(int i,int j,int m,int n){
if(i >= m || j >= n){
return 0;
}
if(i == m -1 && j == n - 1){
return 1;
}
return findByRecursion1(i,j + 1,m,n) + findByRecursion1(i + 1,j,m,n);
}
2.记忆化递归
Map<String,Integer> map = new HashMap<>();
public int uniquePaths(int m, int n) {
/*记忆化递归
* */
if(m <= 0 || n <= 0){
return 0;
}
return findByRecursion(0,0,m,n);
}
private int findByRecursion(int i,int j,int m,int n){
/*第i行第j列格子到第m行第n列格子的路径数
* */
//边界条件
if(i >= m || j >= n){
return 0;
}
if(i == m -1 && j == n - 1){
return 1;
}
String key = i + "*" + j;
if(map.containsKey(key)){
return map.get(key);
}
//从右边出发的路径数+从下边出发的路径数之和
int res = findByRecursion(i,j + 1,m,n) + findByRecursion(i + 1,j,m,n);
map.put(key,res);
return res;
}
3.动态规划
public int uniquePaths2(int m, int n) {
/*动态规划
dp[i][j]表示从(0,0)格子到(i,j)格子的路径数
时间复杂度O(mn),空间复杂度O(mn)
* */
if(m <= 0 || n <= 0){
return 0;
}
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
//第一行只能由左侧元素而来,路径数是1;第一列只能由上侧元素而来,路径数是1
if(i == 0 || j == 0){
dp[i][j] = 1;
}else {
//状态转移方程
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
4.动态规划的状态压缩
public int uniquePaths3(int m, int n) {
/*动态规划-状态压缩,每一行的值取决于其上一行的值;
本行的dp[j] = 上一行的dp[j] + 本行的dp[j-1]
时间复杂度O(mn),空间复杂度O(n)
* */
if(m <= 0 || n <= 0){
return 0;
}
int[] dp = new int[n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
//第一行只能由左侧元素而来,路径数是1;第一列只能由上侧元素而来,路径数是1
if(i == 0 || j == 0){
dp[j] = 1;
}else {
//状态转移方程
dp[j] = dp[j - 1] + dp[j];
}
}
}
return dp[n - 1];
}
代码还可以简化:
public int uniquePaths3(int m, int n) {
/*动态规划-状态压缩,每一行的值取决于其上一行的值;
本行的dp[j] = 上一行的dp[j] + 本行的dp[j-1]
时间复杂度O(mn),空间复杂度O(n)
* */
if(m <= 0 || n <= 0){
return 0;
}
int[] dp = new int[n];
//**数组初始化为1,就不用单独处理第一行或者第一列格子了
Arrays.fill(dp,1);
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
//状态转移方程
dp[j] = dp[j - 1] + dp[j];
}
}
return dp[n - 1];
}