
数据挖掘
Xurui_Luo
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于PCA的降维中,进行特征值分解和SVD分解相关笔记
降维原理 原矩阵X,变换矩阵W,变换后,进入新空间下的WTXW^TXWTX。 想要进入新空间时,各特征之间的差异大分得开,也就是新空间下矩阵的方差越大越好,即WTXXTWW^TXX^TWWTXXTW越大越好,所以有: maxwtr(WTXXTW) s.t. WTW=I \begin{array}{c} \max _{\mathbf{w}} \operatorname{tr}\left(\mathbf{W}^{\mathrm{T}} \mathbf{X} \mathbf{X}^原创 2020-06-27 13:43:54 · 338 阅读 · 0 评论 -
TF-IDF 用于挖掘文章中的关键词
TF TF = 某词在该文档出现次数/该文档中词频最高的词的频数 IDF TF-IDF 算例原创 2020-06-23 23:07:27 · 184 阅读 · 0 评论 -
论文解读 Clustering Very Large Multi-dimensional Datasets with MapReduce [KDD 2011]
123原创 2020-06-23 10:44:57 · 156 阅读 · 0 评论