tensorboard的使用

本文详细介绍了如何使用Tensorboard进行深度学习的可视化。首先,通过`torch.utils.tensorboard.SummaryWriter`导入并实例化,创建log_dir。接着,你可以添加图片、网络结构、标量数据到Tensorboard。例如,使用`add_image`添加图片,`add_graph`展示网络结构,`add_scalar`用于跟踪训练过程中的损失和准确率等标量数据。此外,`add_histogram`可以绘制模型参数的直方图,帮助理解模型权重分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查看tensorboard的命令:

我们在runs同级目录下使用命令行:tensorboard --logdir runs. 当SummaryWriter(log_dir='scalar')的log_dir的参数值 存在时,将tensorboard --logdir runs 改为 tensorboard --logdir 参数值

参考自:https://www.pianshen.com/article/2704986723/

1:导入SummaryWriter包:from torch.utils.tensorboard import SummaryWriter

2:实例化SummaryWriter:tb = SummaryWriter()

     SummaryWriter():自动在当前文件夹下,生成文件夹名称"runs",以及随机的events名称
     SummaryWriter(“test0”):自动在当前文件夹下生成文件夹名称"test0",以及随机的events名称
     SummaryWriter(comment=“user”):自动生成文件夹名称"runs",并附带comment"user"(也就是在runs下面的子文件末尾添加user),以及随机的events名称,在log_dir参数存在时,comment参数不起作用。

     SummaryWriter(log_dir= '指定输出文件所在文件夹路径')


此处参考自:tensorboard_SummaryWriter_event定义及使用示例

3:给tensorboard添加图片:tb.add_image('image_name', grid)

    这里的grid是输入图片的组合,由grid = torchvision.utils.make_grid(images)得到。images是输      入图片

4:给tensorboard添加网络:tb.add_grid( network,image)
      network = Network()
      images, labels = next(iter(train_loader))
      grid = torchvision.utils.make_grid(images)

     tb.add_image('images', grid)
     tb.add_graph(network, images)

注:3,4参考自使用PyTorch的TensorBoard-可视化深度学习指标 | PyTorch系列(二十五)

5:添加标量:tb.add_scalar(tag = '标签名字',scalar_value = y轴坐标,global_step = x轴坐标)

                       tb.add_scalars(tag = '标签名字',{scalar_value = y轴坐标(多个y轴坐标)},global_step = x轴坐标)

     参考自:https://www.freesion.com/article/14671010446/

6:add_histogram分别为模型参数绘制直方图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值