
深度学习
文章平均质量分 60
深度学习
Narnat
不会止步于此
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习_1_基本语法
【代码】深度学习_1。原创 2023-10-11 20:11:15 · 320 阅读 · 0 评论 -
深度学习_2_数据处理
是一个Python的内置模块,用于与操作系统进行交互。通过导入os模块,你可以使用其中提供的函数和方法来执行各种与操作系统相关的任务。数据填充,已存在数据的均值。原创 2023-10-11 22:35:05 · 359 阅读 · 0 评论 -
深度学习_3_张量运算
【代码】深度学习_3_张量运算。原创 2023-10-12 21:29:46 · 368 阅读 · 0 评论 -
深度学习_4_实战_直线最优解
【代码】深度学习_3_实战_房价预测。原创 2023-10-22 22:04:19 · 506 阅读 · 1 评论 -
深度学习_5_模型拟合_梯度下降原理
的偏导数的趋近于零表示在当前参数值附近,沿着每个参数的变化方向,损失函数的变化非常小。这可以解释为损失函数对参数的梯度几乎为零,即在该点附近的斜率几乎为零,导致参数不会有太大的变化。因此,需要适当调整学习率的大小。当损失函数对模型参数的偏导数趋近于零时,意味着在该参数值附近,损失函数的变化非常小,再进行参数更新可能不会有明显的改进。,因此在实际应用中,可以通过调节学习率等参数来控制梯度下降的迭代过程,以更好地找到最优解。当参数的梯度趋近于零时,梯度下降算法会收敛,即停止参数更新,原创 2023-10-23 12:47:16 · 382 阅读 · 0 评论 -
深度学习_6_实战_点集最优直线解_代码解析
3、随机性:正态分布中的随机变量的值可以取任何实数值,但大多数值集中在均值周围,远离均值的值出现的概率逐渐减小。正态分布的概率密度函数呈钟形曲线,这个曲线是对称的。1、均值(Mean):正态分布具有一个均值,通常表示为 μ(mu),它代表分布的中心或平均值。正态分布在统计学、机器学习和数据分析中广泛应用,因为它具有许多有用的性质,包括中心极限定理等。正态分布的特征使得它在各种应用中非常有用,包括假设检验、参数估计、回归分析等。2、方差(Variance):正态分布的方差,通常表示为 σ^2(sigma。原创 2023-10-23 21:49:57 · 317 阅读 · 0 评论 -
深度学习_7_实战_点集最优直线解_优化版代码解析
【代码】深度学习_7_实战_点集最优直线解_优化版代码解析。原创 2023-11-01 21:55:09 · 453 阅读 · 0 评论 -
深度学习_8_对Softmax回归的理解
回归问题,例如之前做房子价格预测的线性回归问题而softmax回归是一个分类问题,即给定一个图片,从猫狗两种动物类别中选出最可靠的那种答案,这个是两类分类问题,因为狗和猫是两类上述多个输出可以这样理解,假设一个图片让机器辨别这个图片的类别,假设是三类分类问题,分别是猫,狗,鸟,那么机器对图片分析假设会得出这样一个置信度的输出即[0.6, 0.3, 0.1]可以看出猫的置信度比较高为0.6,那么机器会判别这个图片为猫继续拿上述猫狗鸟进行举例,那么y可以是 [猫, 狗, 鸟]假设上述让机器检测的图片就是猫,那原创 2023-11-03 17:33:53 · 288 阅读 · 0 评论 -
深度学习_9_图片分类数据集
这些代码的作用是获取网络图片(Fashion-MNIST数据集),将其下载至电脑,做好处理,以便后续训练模型以及检测模型。原创 2023-11-04 22:13:37 · 463 阅读 · 0 评论 -
深度学习_10_softmax_实战
训练效果还是和网上一样的,就是缺了画图功能,将就着吧。原创 2023-11-07 20:24:14 · 320 阅读 · 0 评论 -
深度学习_11_softmax_图片识别代码&原理解析
偏导将偏导得变量当作未知数,其他变量当作常数,是因为本次求导最关心得是本变量对整个函数的数值影响,而忽略其他变量对函数的影响。为了方便不考虑波动值b。原创 2023-11-08 22:39:42 · 515 阅读 · 0 评论 -
深度学习_12_softmax_图片识别优化版代码
【代码】深度学习_12_softmax_图片识别优化版代码。原创 2023-11-13 21:29:13 · 457 阅读 · 0 评论 -
深度学习_13_YOLO_图片切片及维度复原
的效果更加好,其原因在于将不必要的部分用白色代替,减少了不必要的干扰,而扩大式的识别较差,可能是图片的放大损坏了图片的空间结构,也不难排除扩大操作耗费的时间较多导致识别过慢,当然也和所用的识别图片模型的不同有关。在对获取的图片进行识别的时候,如果想减少不必要因素的干扰,将图片切割只对有更多特征信息的部分带入模型识别,而剩余有较多干扰因素的部分舍弃,这就是图片切割的目的,但是。,切割后的图片在维度上已经不满足模型所需要的维度,而将被切割图片的维度恢复,进而能带入模型识别,是本次重点。原创 2023-11-15 19:12:11 · 761 阅读 · 0 评论 -
深度学习_14_单层|多层感知机及代码实现
多层感知机,突破了单层感知机用线性模型去识别事物的瓶颈非线性模型相对于线性模型的优势主要在于其更强大的表达能力和适应性:能够处理更复杂的关系:非线性模型能够表示更复杂的特征和模式,因为它们具有更灵活的函数形式。在现实世界的数据中,很多问题并不是简单的线性关系,而是包含了各种复杂的非线性关系。非线性模型可以更好地拟合这些非线性数据,并提供更准确的预测能力。更好地适应复杂任务:在面对复杂任务时,非线性模型能够更好地捕捉数据中的高阶特征和交互作用。原创 2023-11-17 18:40:24 · 308 阅读 · 0 评论 -
深度学习_15_过拟合&欠拟合
注意:训练集一定要打乱,不要排序,排序会让训练效果大打折扣,如果训练数据是按照某种特定顺序排列的,那么模型可能会学习到这种顺序并在这个过程中引入偏差,导致模型在未见过的新数据上的泛化能力下降,打乱训练集的目的通常是为了防止模型学习到训练数据中的任何顺序依赖性,这样可以提高模型在随机或未见过的新数据上的泛化能力。这是因为学完主要四个维度后又将本应是0的维度也学习了,也就是学习了无用的杂质。正常拟合的模型在损失到达最低点后便不再上升,训练出来的模型与真实数据也及其接近。正常拟合才是我们训练模型的期望状态。原创 2024-02-29 23:20:57 · 1105 阅读 · 0 评论 -
深度学习_16_权重衰退调整过拟合
对上篇代码增添了权重衰退法则,并写了两个不同的版本,两版本本质区别在于用了不同的优化模型手段,效果差别不大。已经详细介绍,以下便不再赘述。原创 2024-03-01 18:32:58 · 776 阅读 · 0 评论 -
深度学习_17_丢弃法调整过拟合
两者代码结合,为了达到过拟合效果,所以上述代码是三层感知机,在原先两层感知机的条件下多加了一层,这样模型就会过拟合,再用丢弃法调整上述三层感知机。原创 2024-03-03 00:06:09 · 566 阅读 · 0 评论 -
深度学习_18_模型的下载与读取
【代码】深度学习_18_模型的下载与读取。原创 2024-03-04 14:49:51 · 2560 阅读 · 0 评论 -
深度学习_19_卷积
【代码】深度学习_19_卷积。原创 2024-03-04 16:44:29 · 721 阅读 · 2 评论 -
深度学习_20_卷积中的填充与步幅
可以看出损失函数中的变量,包含所有卷积核的权重,即所有卷积核的权重都是变量Wi,损失函数正式由这些变量构成,在最后一层卷积核,损失函数由最后一层卷积核输出的值与真实值比较得出。假设我们有一个两层卷积神经网络,第一层的权重是 W1 ,第二层的权重是 W2。输入数据是 x,正确的输出是 y来描述反向传递这个过程。再由求得的梯度去更新每一层的权重。原创 2024-03-14 22:34:25 · 759 阅读 · 0 评论