- 博客(703)
- 收藏
- 关注
原创 Dify、n8n、Coze、Fastgpt、Ragflow到底该怎么选?超详细指南~
Dify、n8n、Coze、Fastgpt、Ragflow到底该怎么选?超详细指南~
2025-06-24 16:18:34
1052
原创 本地化部署DeepSeek-R1蒸馏大模型:基于飞桨PaddleNLP 3.0的实战指南
本地化部署DeepSeek-R1蒸馏大模型:基于飞桨PaddleNLP 3.0的实战指南
2025-06-23 22:25:31
1110
原创 AI大模型应用场景落地策略:从理论到实践的全面指南
人工智能大模型在多个领域展现出广泛的应用潜力,涵盖智能制造、智慧医疗、金融服务、自动驾驶、电子商务、智慧城市、教育、内容创作、智能家居和客户服务等。这些应用通过AI技术提升效率、优化资源分配和提供个性化服务。例如,智能制造中的自动化质检、智慧医疗中的影像诊断、金融服务中的风险评估等。AI大模型的落地需要经过深度理解行业需求、数据收集与分析、定制化模型开发、训练与验证、集成与应用、部署与运维、持续优化及合规与安全性考量等步骤。通过这些流程,AI大模型能够实现与各行业的深度融合,推动技术进步和商业创新。
2025-05-15 21:39:56
906
原创 AI大模型就业指南:大模型热门就业方向有哪些?
AI大模型技术的快速发展正在推动多个行业的革新,并为求职者开辟了新的职业道路。本文探讨了AI大模型时代下的热门就业方向,主要包括自然语言处理(NLP)、计算机视觉、推荐系统和金融科技四大领域。在NLP领域,BERT、GPT等预训练模型的普及使得NLP工程师和语言模型研究员需求激增,应用包括机器翻译和情感分析。计算机视觉领域,大模型在图像和视频解析中的应用催生了计算机视觉工程师和自动驾驶视觉系统工程师等职位,应用场景涵盖人脸识别和医疗影像诊断。推荐系统通过分析用户行为提供个性化服务,推荐算法工程师和用户行为分
2025-05-15 16:49:13
742
原创 电网开始猛扑大模型!大模型挺进核心业务
2024年,大模型技术在央国企中的应用进入新阶段,各行各业全面开花,落地深度和广度显著提升。自5月大模型价格战以来,场景探索加速,财务ROI转正,中标项目数大幅增加,尤其在能源、金融、教育、互联网等行业表现活跃。国网湖南电科院、国网信通继远软件等央国企率先完成大模型试点,逐步向核心场景迈进。南方电网也发布了自主可控的电力大模型“大瓦特”,应用于智能客服、输变配、电力调度等领域,显著提升了效率和准确性。大模型技术正加速在各行各业全面应用,推动智能化转型。
2025-05-15 15:36:33
1695
原创 DeepSeek本地部署全攻略:保姆级教程带你轻松上手
本文介绍了如何将DeepSeek大模型部署在本地电脑上,并详细说明了适合本地部署的场景和基本步骤。首先,本地部署适合电脑配置较高、有私密数据处理需求、需要与本地工作流结合、日常使用量大或希望进行个性化定制的用户。对于不熟悉AI或使用频率较低的用户,建议直接使用DeepSeek的APP或网页版。本地部署的基本步骤包括安装ollama、选择并安装模型、通过命令行与模型对话等。此外,文章还简要介绍了Open-WebUI的安装步骤,但建议不熟悉电脑操作的用户跳过此部分。最后,文章提供了查看、删除模型的方法,并推荐了
2025-05-13 15:40:43
2315
原创 AI应用实战:DeepSeek+Dify构建知识库、Agent、工作流与聊天助手
在我第一篇关于AI的文章中《[【AI】初体验AI大模型应用平台]》,我有简单提到Dify,那个时候对于Dify的理解是一款大语言模型的应用开发平台,就是类似一个微信的小程序开发平台,每个个体,每个公司都可以在上面开发属于自己的应用。最近深入了解之后,又对其有了更进一步的理解。昨天看到一个网友说"不会使用DeepSeek,那么这东西到普通人手里,就是百度Plus版",这么说也不无道理。
2025-05-13 15:15:19
1704
原创 LLaMA-Factory微调与部署教程:从基础到实战的详细流程
本文介绍了如何使用llama-factory进行Lora微调模型、部署模型以及通过Python调用API。首先,建议阅读官方文档和推荐教程,了解基本流程。安装步骤包括克隆仓库、安装依赖包,并建议从国内平台下载模型。通过可视化网页界面下载模型权重,并加载到显存中进行对话。微调模型时,需准备符合格式要求的数据集,并在dataset_info.json中注册。文末还提供了大模型AGI-CSDN的独家资料包。
2025-05-13 14:55:18
1287
原创 大模型LoRA微调实践,以及LoRA代码实现理解
微调是一种释放大模型潜力的技术,通过调整模型参数使其更精准地回答问题。例如,针对小学生的需求,微调后的模型能够提供详细的解题思路,而不仅仅是简单答案。本文作者使用1500道小学题目对千问14B模型进行了微调,训练后模型在回答问题时能够带上解题思路。微调过程在阿里云上耗时4小时,费用51元。此外,作者还复现了LoRA微调技术,通过低秩矩阵模拟全量微调的增量参数矩阵,显著减少了参数量。微调虽然难以让模型学习新知识,但可以有效调整输出风格。文末提供了大模型学习资料包,帮助读者从零基础系统性地学习大模型。
2025-05-13 14:32:33
1183
原创 大模型在企业知识库场景的落地思考
今天我们深入探讨了企业在知识库场景下运用大型模型的实践策略。我们首先分析了大型模型在企业实际应用中所面临的挑战,包括算力、调度和数据等方面的问题。随后,我们提出了一系列解决方案,包括构建高效管理和自适应扩展的算力资源体系,开发或引进先进的调度系统,以及建立完善的数据处理流程。最后,我们强调了企业在实施大型模型实践策略时,必须关注数据安全、隐私和合规问题,以确保实践方案的可行性和可持续性。
2025-05-12 15:47:54
1036
原创 企业构建AI大模型应用的步骤流程与关键问题解析
构建企业级AI大模型驱动的应用系统是一项复杂的任务,涉及业务与技术的深度融合。文章系统化地将这一过程划分为五个核心步骤:1) 需求场景的精确定义,确保目标清晰;2) 大模型的科学选型,平衡性能、成本与合规性;3) 大模型性能的强化调优,通过提示词工程、RAG和微调等手段提升效果;4) 大模型的部署与运行维护,确保系统稳定与弹性伸缩;5) AI应用的无缝集成,融入企业现有生态系统。文章强调,业务专家与AI大模型专家的紧密协作是成功的关键,并为企业在AI大模型应用中的策略抉择与潜在难题提供了可操作性的指导。
2025-05-12 14:58:05
1273
原创 手把手教你构建Agentic RAG:一种基于多文档RAG应用的AI Agent智能体
Agentic RAG 是一种基于AI Agent的增强型RAG(检索增强生成)架构,旨在处理复杂的企业文档需求。与经典RAG不同,Agentic RAG通过引入AI Agent的任务规划与工具协调能力,能够应对跨文档、多类型信息的复杂查询场景。其架构包括多个RAG引擎(如向量索引、摘要索引等),每个引擎由ToolAgent管理,而TopAgent则负责全局协调。这种架构不仅保留了RAG的基础检索能力,还能处理更高层次的语义理解与跨文档分析任务。通过LlamaIndex等工具,开发者可以轻松实现Agenti
2025-05-12 14:31:28
770
原创 大模型应用框架解析:RAG、Agent、微调、提示词工程究竟是什么? 大模型入门到精通!
RAG(Retrieval-Augmented Generation)是一种结合检索与生成的先进技术,通过从外部知识库中检索相关信息,提升生成文本的准确性和相关性。其核心优势在于知识更新成本低、答案准确性高、可解释性强,适用于知识密集型任务如AI文档问答、科研等。RAG的技术流程包括检索和生成两个阶段,依赖编码模型如BM25、SentenceBERT等。然而,其性能受限于知识库的质量和检索模块的准确性。未来,RAG有望在智能客服、企业信息库等领域进一步拓展应用。相关产品如RAGFlow和GraphRAG也在
2025-05-10 22:01:29
917
原创 别再傻傻分不清!一文讲透大模型里的 RAG、Agent、微调和提示词工程
本文简要介绍了人工智能大模型中的几个关键概念:RAG、Agent和微调。RAG(检索增强生成)通过外挂知识库增强大模型的信息检索能力,使其能够提供更准确和全面的回答。Agent(智能体)则具备自主规划和执行复杂任务的能力,类似于一个能够独立思考和行动的“数字助手”。微调则是在大模型基础上,通过特定领域的数据进行二次训练,使其在特定领域更加专业化。这些技术各有特点,RAG增强知识获取,Agent提升任务执行能力,微调则专注于领域专业化,共同推动大模型在不同应用场景中的高效运用。
2025-05-10 21:32:26
1463
原创 基于RAG架构搭建医疗智能问答系统
文章介绍了基于RAG(Retrieval Augmented Generation)架构搭建医学智能问答系统的过程。传统医疗问答系统因缺乏对语境和语义的深层理解,难以处理复杂问题。随着大语言模型(LLM)的出现,RAG架构通过检索外挂知识库信息并生成回答,有效减少了LLM的“幻觉”现象。文章详细阐述了RAG的工作流程,包括知识库创建、信息检索和结果生成,并介绍了如何使用FastGPT搭建基础问答系统,包括在线搭建和本地部署的步骤。文章还提供了AI大模型学习资源包,供读者进一步学习。
2025-05-10 17:35:53
1151
原创 构建基于RAG检索的智能客服系统
RAG(Retrieval-Augmented Generation)检索技术是一种结合信息检索(Retrieval)和生成(Generation)的混合模型方法,旨在通过检索相关信息来增强生成模型的性能。RAG 技术特别适用于需要复杂背景信息或大规模知识库支持的任务,如问答系统、对话系统和文本生成等。前排提示,文末有大模型AGI-CSDN独家资料包哦!
2025-05-08 15:26:47
1037
原创 如何搭建基于大模型的智能知识库
基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。
2025-05-08 14:57:55
915
原创 本地化知识库RAG系统的构建
大模型应用领域已经呈现出多样化的发展态势,技术和参数的更新速度也相当迅猛。开源社区在推动大模型应用方面发挥着重要作用,不仅如此,还涌现了诸多在线LLM对话问答和知识库检索应用。许多这类应用甚至只需注册即可免费使用,在日常工作中,笔者也经常依赖LLM,并已将其视为不可或缺的工具之一。前排提示,文末有大模型AGI-CSDN独家资料包哦!举例来说,在搜索领域,传统的基于搜索引擎的检索有时无法与LLM的准确度相提并论。目前,许多检索任务,如代码bug的提问、知识的搜索、文献阅读等,都倾向于选择LLM作为首选工具。笔
2025-05-08 14:04:43
1053
原创 企业搭建知识库,为什么倾向于私有化部署
在当今信息爆炸的时代,随着企业的发展扩大,企业内部知识分散在每个员工的电脑上,信息冗余,存在多份数据,难以做到统一;文档涉密权限问题管理难度大、监控成本高、管理难度大。企业面临着处理和管理大量知识和信息的挑战。为了更好地组织、共享和管理企业内部知识,许多企业开始搭建内部知识库。知识是企业的财富,知识库作为知识管理的核心环节,对于企业的发展也至关重要。在搭建知识库的过程中,越来越多的企业开始选择私有化部署的方式。那么,为什么企业倾向于私有化部署呢?
2025-05-07 16:55:11
1065
原创 AI知识库搭建教程:小白也能轻松掌握的高效方法
在人工智能(ai)日新月异的今天,拥有一个高效且全面的知识库是每个企业重要的一部分。对于新手来说,搭建ai知识库可能听起来有些复杂,毫无头绪,但是别担心,这篇小白保姆级教学将带你一步步了解如何高效搭建AI知识库。
2025-05-07 15:36:56
972
原创 AI大模型实战:智能 AI 应用知识库搭建,让你的智能体更加精准
本文探讨了智能 AI 应用为什么需要知识库,主要围绕以下几点展开:1. 大语言模型(LLM)的局限性:LLM 无法准确预测训练数据之外的内容。2. RAG(检索增强生成)技术:通过引入外部知识库,使 AI 能够访问和利用特定领域或组织的内部知识,无需重新训练模型。3. RAG 的工作原理:在用户提问前,将相关知识作为上下文提供给 AI 模型,使其能够"学习"并回答相关问题。4. 高质量 RAG 知识库的搭建:强调了文档质量的重要性,并提供了文本分段与清洗的具体建议。
2025-05-07 14:51:24
1204
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人