自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(684)
  • 收藏
  • 关注

原创 AI大模型应用场景落地策略:从理论到实践的全面指南

人工智能大模型在多个领域展现出广泛的应用潜力,涵盖智能制造、智慧医疗、金融服务、自动驾驶、电子商务、智慧城市、教育、内容创作、智能家居和客户服务等。这些应用通过AI技术提升效率、优化资源分配和提供个性化服务。例如,智能制造中的自动化质检、智慧医疗中的影像诊断、金融服务中的风险评估等。AI大模型的落地需要经过深度理解行业需求、数据收集与分析、定制化模型开发、训练与验证、集成与应用、部署与运维、持续优化及合规与安全性考量等步骤。通过这些流程,AI大模型能够实现与各行业的深度融合,推动技术进步和商业创新。

2025-05-15 21:39:56 721

原创 AI大模型就业指南:大模型热门就业方向有哪些?

AI大模型技术的快速发展正在推动多个行业的革新,并为求职者开辟了新的职业道路。本文探讨了AI大模型时代下的热门就业方向,主要包括自然语言处理(NLP)、计算机视觉、推荐系统和金融科技四大领域。在NLP领域,BERT、GPT等预训练模型的普及使得NLP工程师和语言模型研究员需求激增,应用包括机器翻译和情感分析。计算机视觉领域,大模型在图像和视频解析中的应用催生了计算机视觉工程师和自动驾驶视觉系统工程师等职位,应用场景涵盖人脸识别和医疗影像诊断。推荐系统通过分析用户行为提供个性化服务,推荐算法工程师和用户行为分

2025-05-15 16:49:13 690

原创 电网开始猛扑大模型!大模型挺进核心业务

2024年,大模型技术在央国企中的应用进入新阶段,各行各业全面开花,落地深度和广度显著提升。自5月大模型价格战以来,场景探索加速,财务ROI转正,中标项目数大幅增加,尤其在能源、金融、教育、互联网等行业表现活跃。国网湖南电科院、国网信通继远软件等央国企率先完成大模型试点,逐步向核心场景迈进。南方电网也发布了自主可控的电力大模型“大瓦特”,应用于智能客服、输变配、电力调度等领域,显著提升了效率和准确性。大模型技术正加速在各行各业全面应用,推动智能化转型。

2025-05-15 15:36:33 1040

原创 DeepSeek本地部署全攻略:保姆级教程带你轻松上手

本文介绍了如何将DeepSeek大模型部署在本地电脑上,并详细说明了适合本地部署的场景和基本步骤。首先,本地部署适合电脑配置较高、有私密数据处理需求、需要与本地工作流结合、日常使用量大或希望进行个性化定制的用户。对于不熟悉AI或使用频率较低的用户,建议直接使用DeepSeek的APP或网页版。本地部署的基本步骤包括安装ollama、选择并安装模型、通过命令行与模型对话等。此外,文章还简要介绍了Open-WebUI的安装步骤,但建议不熟悉电脑操作的用户跳过此部分。最后,文章提供了查看、删除模型的方法,并推荐了

2025-05-13 15:40:43 1614

原创 AI应用实战:DeepSeek+Dify构建知识库、Agent、工作流与聊天助手

在我第一篇关于AI的文章中《[【AI】初体验AI大模型应用平台]》,我有简单提到Dify,那个时候对于Dify的理解是一款大语言模型的应用开发平台,就是类似一个微信的小程序开发平台,每个个体,每个公司都可以在上面开发属于自己的应用。最近深入了解之后,又对其有了更进一步的理解。昨天看到一个网友说"不会使用DeepSeek,那么这东西到普通人手里,就是百度Plus版",这么说也不无道理。

2025-05-13 15:15:19 1482

原创 LLaMA-Factory微调与部署教程:从基础到实战的详细流程

本文介绍了如何使用llama-factory进行Lora微调模型、部署模型以及通过Python调用API。首先,建议阅读官方文档和推荐教程,了解基本流程。安装步骤包括克隆仓库、安装依赖包,并建议从国内平台下载模型。通过可视化网页界面下载模型权重,并加载到显存中进行对话。微调模型时,需准备符合格式要求的数据集,并在dataset_info.json中注册。文末还提供了大模型AGI-CSDN的独家资料包。

2025-05-13 14:55:18 1097

原创 大模型LoRA微调实践,以及LoRA代码实现理解

微调是一种释放大模型潜力的技术,通过调整模型参数使其更精准地回答问题。例如,针对小学生的需求,微调后的模型能够提供详细的解题思路,而不仅仅是简单答案。本文作者使用1500道小学题目对千问14B模型进行了微调,训练后模型在回答问题时能够带上解题思路。微调过程在阿里云上耗时4小时,费用51元。此外,作者还复现了LoRA微调技术,通过低秩矩阵模拟全量微调的增量参数矩阵,显著减少了参数量。微调虽然难以让模型学习新知识,但可以有效调整输出风格。文末提供了大模型学习资料包,帮助读者从零基础系统性地学习大模型。

2025-05-13 14:32:33 1105

原创 大模型在企业知识库场景的落地思考

今天我们深入探讨了企业在知识库场景下运用大型模型的实践策略。我们首先分析了大型模型在企业实际应用中所面临的挑战,包括算力、调度和数据等方面的问题。随后,我们提出了一系列解决方案,包括构建高效管理和自适应扩展的算力资源体系,开发或引进先进的调度系统,以及建立完善的数据处理流程。最后,我们强调了企业在实施大型模型实践策略时,必须关注数据安全、隐私和合规问题,以确保实践方案的可行性和可持续性。

2025-05-12 15:47:54 961

原创 企业构建AI大模型应用的步骤流程与关键问题解析

构建企业级AI大模型驱动的应用系统是一项复杂的任务,涉及业务与技术的深度融合。文章系统化地将这一过程划分为五个核心步骤:1) 需求场景的精确定义,确保目标清晰;2) 大模型的科学选型,平衡性能、成本与合规性;3) 大模型性能的强化调优,通过提示词工程、RAG和微调等手段提升效果;4) 大模型的部署与运行维护,确保系统稳定与弹性伸缩;5) AI应用的无缝集成,融入企业现有生态系统。文章强调,业务专家与AI大模型专家的紧密协作是成功的关键,并为企业在AI大模型应用中的策略抉择与潜在难题提供了可操作性的指导。

2025-05-12 14:58:05 997

原创 手把手教你构建Agentic RAG:一种基于多文档RAG应用的AI Agent智能体

Agentic RAG 是一种基于AI Agent的增强型RAG(检索增强生成)架构,旨在处理复杂的企业文档需求。与经典RAG不同,Agentic RAG通过引入AI Agent的任务规划与工具协调能力,能够应对跨文档、多类型信息的复杂查询场景。其架构包括多个RAG引擎(如向量索引、摘要索引等),每个引擎由ToolAgent管理,而TopAgent则负责全局协调。这种架构不仅保留了RAG的基础检索能力,还能处理更高层次的语义理解与跨文档分析任务。通过LlamaIndex等工具,开发者可以轻松实现Agenti

2025-05-12 14:31:28 706

原创 大模型应用框架解析:RAG、Agent、微调、提示词工程究竟是什么? 大模型入门到精通!

RAG(Retrieval-Augmented Generation)是一种结合检索与生成的先进技术,通过从外部知识库中检索相关信息,提升生成文本的准确性和相关性。其核心优势在于知识更新成本低、答案准确性高、可解释性强,适用于知识密集型任务如AI文档问答、科研等。RAG的技术流程包括检索和生成两个阶段,依赖编码模型如BM25、SentenceBERT等。然而,其性能受限于知识库的质量和检索模块的准确性。未来,RAG有望在智能客服、企业信息库等领域进一步拓展应用。相关产品如RAGFlow和GraphRAG也在

2025-05-10 22:01:29 823

原创 别再傻傻分不清!一文讲透大模型里的 RAG、Agent、微调和提示词工程

本文简要介绍了人工智能大模型中的几个关键概念:RAG、Agent和微调。RAG(检索增强生成)通过外挂知识库增强大模型的信息检索能力,使其能够提供更准确和全面的回答。Agent(智能体)则具备自主规划和执行复杂任务的能力,类似于一个能够独立思考和行动的“数字助手”。微调则是在大模型基础上,通过特定领域的数据进行二次训练,使其在特定领域更加专业化。这些技术各有特点,RAG增强知识获取,Agent提升任务执行能力,微调则专注于领域专业化,共同推动大模型在不同应用场景中的高效运用。

2025-05-10 21:32:26 1180

原创 基于RAG架构搭建医疗智能问答系统

文章介绍了基于RAG(Retrieval Augmented Generation)架构搭建医学智能问答系统的过程。传统医疗问答系统因缺乏对语境和语义的深层理解,难以处理复杂问题。随着大语言模型(LLM)的出现,RAG架构通过检索外挂知识库信息并生成回答,有效减少了LLM的“幻觉”现象。文章详细阐述了RAG的工作流程,包括知识库创建、信息检索和结果生成,并介绍了如何使用FastGPT搭建基础问答系统,包括在线搭建和本地部署的步骤。文章还提供了AI大模型学习资源包,供读者进一步学习。

2025-05-10 17:35:53 955

原创 构建基于RAG检索的智能客服系统

RAG(Retrieval-Augmented Generation)检索技术是一种结合信息检索(Retrieval)和生成(Generation)的混合模型方法,旨在通过检索相关信息来增强生成模型的性能。RAG 技术特别适用于需要复杂背景信息或大规模知识库支持的任务,如问答系统、对话系统和文本生成等。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-08 15:26:47 973

原创 如何搭建基于大模型的智能知识库

基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。

2025-05-08 14:57:55 881

原创 5分搞懂大模型 - RAG(检索、增强、生成)

RAG(Retrieval-Augmented Generation,检索增强生成),RAG。

2025-05-08 14:26:10 869

原创 本地化知识库RAG系统的构建

大模型应用领域已经呈现出多样化的发展态势,技术和参数的更新速度也相当迅猛。开源社区在推动大模型应用方面发挥着重要作用,不仅如此,还涌现了诸多在线LLM对话问答和知识库检索应用。许多这类应用甚至只需注册即可免费使用,在日常工作中,笔者也经常依赖LLM,并已将其视为不可或缺的工具之一。前排提示,文末有大模型AGI-CSDN独家资料包哦!举例来说,在搜索领域,传统的基于搜索引擎的检索有时无法与LLM的准确度相提并论。目前,许多检索任务,如代码bug的提问、知识的搜索、文献阅读等,都倾向于选择LLM作为首选工具。笔

2025-05-08 14:04:43 952

原创 企业搭建知识库,为什么倾向于私有化部署

在当今信息爆炸的时代,随着企业的发展扩大,企业内部知识分散在每个员工的电脑上,信息冗余,存在多份数据,难以做到统一;文档涉密权限问题管理难度大、监控成本高、管理难度大。企业面临着处理和管理大量知识和信息的挑战。为了更好地组织、共享和管理企业内部知识,许多企业开始搭建内部知识库。知识是企业的财富,知识库作为知识管理的核心环节,对于企业的发展也至关重要。在搭建知识库的过程中,越来越多的企业开始选择私有化部署的方式。那么,为什么企业倾向于私有化部署呢?

2025-05-07 16:55:11 1021

原创 AI知识库搭建教程:小白也能轻松掌握的高效方法

在人工智能(ai)日新月异的今天,拥有一个高效且全面的知识库是每个企业重要的一部分。对于新手来说,搭建ai知识库可能听起来有些复杂,毫无头绪,但是别担心,这篇小白保姆级教学将带你一步步了解如何高效搭建AI知识库。

2025-05-07 15:36:56 843

原创 AI大模型实战:智能 AI 应用知识库搭建,让你的智能体更加精准

本文探讨了智能 AI 应用为什么需要知识库,主要围绕以下几点展开:1. 大语言模型(LLM)的局限性:LLM 无法准确预测训练数据之外的内容。2. RAG(检索增强生成)技术:通过引入外部知识库,使 AI 能够访问和利用特定领域或组织的内部知识,无需重新训练模型。3. RAG 的工作原理:在用户提问前,将相关知识作为上下文提供给 AI 模型,使其能够"学习"并回答相关问题。4. 高质量 RAG 知识库的搭建:强调了文档质量的重要性,并提供了文本分段与清洗的具体建议。

2025-05-07 14:51:24 1129

原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库

前排提示,文末有大模型AGI-CSDN独家资料包哦!RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。

2025-05-06 17:49:11 990

原创 手把手教你搭建私有大模型+私有知识库,小白也能轻松学会!!

目标:自己搭建的AI大模型接入私人知识库RAG前排提示,文末有大模型AGI-CSDN独家资料包哦!私有大模型就是把目前最流行的开源大模型部署到自己的电脑上,无需联网、也不用买会员,隐私可不会泄露,直接可以和AI聊天。知识库就是你可以把你喜欢的资料统统喂给大模型,然后让AI查询你指定的材料,再来回复你的问题。若是在公司搭建这套组合,可以把公司的介绍、产品数据、销售数据等等都发给私有大模型,回复用户的信息就更有针对性。大模型搭建已经分享过了,就不在此赘述,直接进入主题,知识库搭建。AnthingLLM。

2025-05-06 16:40:45 914

原创 使用AI大模型的正确姿势!接入知识库、微调,5种方法,总有一种适合你

真正的魔力在于结合这些方法:提示词、RAG、微调、切换模型和使用多模态大模型。利用每种方法的优势,并将其应用于文本和图像数据,以此用大模型提升你的生产力。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型。

2025-05-06 15:52:49 1049

原创 只需三步,本地打造自己的AI个人专属知识库

虽然对于大多数人来讲,由于我们的电脑配置等原因,部署本地大模型并且达到很好的效果是很奢侈的一件事情。但是这并不妨碍我们对其中的流程和原理进行详细的了解读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

2025-04-28 17:07:45 827

原创 一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型

由于作者的眼界、精力和能力也有限,并且确实也不是专业的AI研究员,仅仅是一位兴趣使然的爱好者,这里列出的几款也单纯只是作者平常关注到的,所以可能也不全,请各位见谅!文章从起笔写到这里已经过了三天了,这三天也基本把上文提到的大模型侧工具全部体验了一遍,下面说一下主要结论吧。从功能丰富度和性能优化的角度综合评估,LM Studio明显更胜一筹。从工具本身使用及模型部署效率来看,Ollama的上手速度会更快,使用会更便捷,效率也会更高。从企业级稳定性和高可用。

2025-04-28 16:56:43 923

原创 大模型面试看完这些,我直接进入字节了

大家好!我知道你们中有很多人都梦想着能够进入像字节跳动这样的顶级科技公司工作,对吧?别急,别慌,今天我就来给大家传授一下我的“独门秘籍”——如何通过深入研究和准备大模型技术,成功赢得字节跳动的面试机会并最终拿到offer!在人工智能飞速发展的今天,大模型技术无疑是行业内的“香饽饽”。掌握了这项技术,就等于在求职道路上拥有了一张“王牌”。而我就是通过这张“王牌”,再加上一些面试技巧和准备,成功踏入了字节的大门。我知道你们可能觉得这事儿有点玄乎,但其实并不难。

2025-04-28 16:33:51 989

原创 大模型经典面试题,(非常详细)收藏这一篇就够了!

LangChain是一个用于构建和运行大型语言模型应用的开源框架。它提供了一套工具和组件,帮助开发者将大型语言模型(如 GPT-3)与其他工具和API结合,以完成更复杂的任务。1、LangChain包含哪些核心概念?Components:可重用的模块,例如API调用、数据库查询等。Chains:将多个Components链接在一起以完成特定任务的流程。Prompt Templates: 用于指导语言模型生成输出的文本模板。Output Parsers:解析语言模型输出的工具。

2025-04-28 16:02:31 924

原创 2025最新私有化部署AI大模型,让每个人都有属于自己的AI助理

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。无论是使用命令还是调用大模型接口,用起来肯定是不方便,大模型肯定是要配合完美的页面来使用的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

2025-04-28 15:44:55 847

原创 十大中国流行的AI大模型企业及平台汇总,收藏这一篇就够了!!

下面一起来看看吧!

2025-04-27 14:58:18 1246

原创 DeepSeek 本地部署后如何联网搜索,小白必看秘籍!

是一款开源浏览器扩展程序,可为您的本地 AI 模型提供侧边栏和 Web UI。它允许您从任何网页与您的模型进行交互。1、本地 AI 模型的 Web UI,支持可视化交互操作(不用安装 Docker 环境,也不用安装 Python 环境)2、支持联网搜索功能Github 官网:https://github.com/n4ze3m/page-assist。

2025-04-27 14:35:33 978

原创 2025 年AI八大预测与八大风口:AI 浪潮下的掘金机遇

2025 年,站在时代的前沿,一场由科技驱动的变革风暴正以排山倒海之势席卷而来,而 AI 无疑是这场风暴的核心力量,将重塑我们生活与经济的方方面面。今天,我们一起来深度剖析以下2025 年的八大预测以及八大风口,助你抢占先机,开启财富与成长的新征程。

2025-04-27 14:18:30 1527

原创 零基础零成本,手把手部署一个属于你的私有大模型, 训练自己私有大模型

看了那么多chatGPT的文章,作为一名不精通算法的开发,也对大模型心痒痒。但想要部署自己的大模型,且不说没有算法相关的经验了,光是大模型占用的算力资源,手头的个人电脑其实也很难独立部署。就算使用算法压缩后的大模型,部署在个人电脑上,还要忍受极端缓慢的计算速度以及与chatGPT相差甚远的模型效果。前排提示,文末有大模型AGI-CSDN独家资料包哦!有什么办法能够部署属于我们自己的大模型呢?有编程基础:作为一个合格的程序员,这应该是必备素质。

2025-04-27 14:00:10 959

原创 初学者如何对大模型进行微调?

现在大模型微调的门槛越来越低,市场上有大量开源微调框架。只要你会部署、有机器就能出个结果,赶紧动手玩起来吧!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-04-26 09:15:00 565

原创 大模型微调的7种神级方法,零基础入门大模型,非常详细!

本篇文章深入分析了大型模型微调的基本理念和多样化技术,细致介绍了LoRA、适配器调整(Adapter Tuning)、前缀调整(Prefix Tuning)等多个微调方法。详细讨论了每一种策略的基本原则、主要优点以及适宜应用场景,使得读者可以依据特定的应用要求和计算资源限制,挑选最适合的微调方案。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-04-26 09:00:00 809

原创 本地部署大模型与基于RAG构建私有知识库,一步到位!

以上就是本地大模型部署和基于RAG方案的私有知识库搭建的基本操作。除此之外,还有更多丰富有趣的功能等待探索。如今大模型遍布各行各业、各个领域,基于RAG方案的私有知识库技术也逐渐发展,成为提升个人工作效率与创造潜能的新风尚。本地部署模型意味着用户能在自己的设备上享受即时响应的智能辅助,无需依赖云端,既保护了个人数据隐私,又确保了操作的低延迟与高可靠性。结合RAG方案的私有知识库,则让每位用户能够构建专属自己的知识宇宙。

2025-04-25 15:43:14 1246

原创 一分钟教你搭建本地私有AI大模型智能体,小白也能看懂!

搭建本地私有AI大模型智能体工作流涉及使用Ollama和FastGPT这两个工具。前排提示,文末有大模型AGI-CSDN独家资料包哦!top_p=1.0,

2025-04-25 15:24:04 879

原创 私有化大模型部署最佳解决方案,非常详细收藏这一篇就足够了!

Ollama 是一个强大的开源工具,专为构建和部署大型语言模型(LLM)设计。它提供了一个直观的命令行界面和服务器支持,使用户能够轻松下载、运行和管理各种流行的开源LLM。与需要复杂配置和强大硬件的传统 LLM 不同,Ollama 让使用大模型变得像操作手机App一样简单便捷。Ollama 支持多种大语言模型,如Qwen2、Llama3、Phi3、Gemma2等,它不仅简化了在本地环境中的运行和测试过程,还降低了技术门槛,让开发者、研究人员和技术爱好者可以快速部署和实验最新的模型技术。Ollama官网。

2025-04-25 15:04:04 1315

原创 大模型RAG优化方案与实践从入门到精通,非常详细!

随着ChatGPT的兴起,大语言模型再次走进人们的视野,其在NLP领域表现出的语言识别、理解以及推理能力令人惊叹。越来越多的行业开始探索大语言模型的应用,比如政务、医疗、交通、导购等行业。通义系列、GPT系列、LLama系列等模型,在语言交互场景下表现十分抢眼。以Gemini为代表这类大模型甚至发展出了视觉和听觉,朝着智能体的方向演化。他们在多个指标上展现的能力甚至已经超过了人类。

2025-04-25 14:35:07 1184

原创 AI大模型RAG实战教程,从入门到精通,非常详细,看这一篇就够了!

RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。RAG 技术架构图介绍:富文本 主要存储于 txt 文件中,因为排版比较整洁,所以获取方式比较简单实战技巧:【版面分析——富文本txt读取】

2025-04-24 16:16:50 827

原创 大模型面试攻略:一文彻底搞懂Agent介绍,破解面试中的老大难问题!

Agent(智能体)概念最早由人工智能领域的研究者提出,旨在模拟人类的智能行为。最初的Agent系统主要集中在解决特定问题或领域,如专家系统、规则引擎等。20世纪80年代末和90年代初,随着计算机和网络技术的发展,Agent开始融入到各种应用中,如搜索引擎、个人助理等。强化学习等技术的兴起(2014年起,深度强化学习出现)使得Agent能够通过与环境的交互来学习和优化其行为。

2025-04-24 15:50:06 654

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除