《esp32部署tinyML实现手势识别功能》

通过使用camera 进行手势的采集,一般采集的data_set大于等于50个为好,这样训练出来,识别效果更好。(如下图:为采集的效果)
在这里插入图片描述
这里会使用到十分好用的edge impulse 然后通过将摄像头采集的数据,导入到edge impulse 中,然后再打上标签。通过模型训练,然后再部署到你的esp32板子中,就可以实现识别的功能。十分的边界,这样省时间 edge impulse 给不会自己训练模型的小伙伴,提供了简单得不用再简单的训练方法。这样就可以完成端的机器学习应用。

在这里插入图片描述

下面是端测离线的情况识别到的手势。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值