二叉搜索树的第k个结点(BST有序性理解)

理解二叉搜索树的有序性质,通过中序遍历找到第k小的节点。中序遍历过程中,左子树先于根节点,根节点后于右子树,形成升序序列。利用循环中序遍历,先将根节点的左子树入栈,然后在遍历过程中找到第k个元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BST有序性理解

给定一棵二叉搜索树,请找出其中的第k小的结点。例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4

解题思路:
BST本身就是有序的(左子树小于根结点, 右子树大于根结点),中序遍历即是升序
要求第k小,即中序遍历时到达第k个元素(二叉搜索树,不存在两个相同的节点值)
采用循环中序遍历的方式(不使用递归), 拿到一个根结点, 先把所有的左节点压栈(通过根结点得到左节点,访问完左节点,才访问根结点—>根结点先进后出—> 选栈结构)
中序采用do{…}while()语句, 先让他执行一次,先把所有结点全入栈(以一个根结点出发的所有左节点)

即就是在搜素二叉树中, 中序找第k个结点

struct TreeNode { 
	int val; 
	struct TreeNode *left; 
	struct TreeNode *right; 
	TreeNode(int x) : val(x), left(NULL), right(NULL) { 
	}
};

class Solution {
public: 
	TreeNode* KthNode(TreeNode* pRoot, int k) { 
		// 第k小(k越大,则值越大的),那就从k开始, k是总结点个数 
		if(pRoot == nullptr || k <= 0){
			return nullptr; 
		}
		stack<TreeNode*> st; // 放节点
		TreeNode* node = pRoot;
		do{
			while(node != nullptr){ // node指向第一个结点
				// 将左子树全部入栈, 先放根,再放左节点, 最后出栈的时候就是先出最左结点
				st.push(node);
				node = node->left;
			}
			// 把当前结点的所有的左子树全入了, 此时结点肯定指向nullptr, 接下来开始中序访问
			if(!st.empty()){ 
				node = st.top();// 保存栈顶元素
				st.pop();// 已访问了一次
				k--;// 则k--
				if(k == 0){// 说明已经把对应的结点找到了
					return node; 
					//其实是最大的那个结点, 也就是第k小, 输入的k就代表结点总数, 那么第k小就是倒数第几个最大的
				}// 访问完左子树
				node = node->right;// 压右子树, 下次循环时,又把这个结点的所有左节点全入栈了
			}
		}while (node != nullptr || !st.empty());// 说明当前的树是没有访问完的
		//node有可能为空(没有右节点),但是只要stack不为空,就要继续pop求下一个。
		//有没有可能st为空?有可能(刚入了一个结点,发现其没有左子树,当前结点出栈之后, 栈就为空了,但是节点不为空),这个时候就要检测node,如果node不为空,就要整体检测右子树 
		
		//走到这里,就说明没有找到 
		return nullptr;
	}
};
<think>嗯,用户想了解二叉排树和二叉搜索树的区别和联系。首先,我需要确认这两个术语的定义。根据提供的引用,引用[2]、[4]提到二叉搜索树、二叉排树、二叉查找树是同一概念的不同名称。比如引用[2]明确说“二叉搜索树BST,Binary Search Tree),也称二叉排树或二叉查找树”,而引用[4]也指出“二叉排树(Binary Sort Tree)又称二叉查找(搜索)树(Binary Search Tree)”。这说明它们是同一个数据结构的不同翻译或称呼,可能没有本质区别。 接下来,用户可能想知道为什么会有不同的名称。可能是中文翻译的不同,比如“排”和“搜索”对应不同的侧重点,但实际结构特性一致。根据引用中的描述,无论是二叉排树还是二叉搜索树,都满足左子树节点小于根,右子树节点大于根的特性,并且中遍历得到有列。例如引用[2]提到“对二叉搜索树进行中遍历可以得到按关键字排的有列”,这也适用于二叉排树。 然后,我需要检查是否有引用提到两者的区别。但根据提供的资料,所有引用都统一认为它们是同一概念的不同名称,没有提到区别。例如引用[4]直接说“二叉排树又称二叉查找(搜索)树”,引用[2]也做了同样的说明。因此可以确定它们是同一数据结构的不同名称,没有本质区别。 此外,用户可能还想了解它们的应用场景和操作,比如查找、插入、删除等。根据引用[5]中的代码示例,二叉搜索树的查找操作利用了左小右大的特性,这和二叉排树的操作一致。引用[3]提到二叉查找树在大量数据下查询速度较快,这也适用于二叉排树。 总结来说,用户的问题可能源于不同资料中使用不同术语导致的困惑,需要明确两者是同一概念的不同称呼,没有区别。同时,可以进一步解释它们的特性和操作,帮助用户全面理解。</think>### 二叉排树 vs 二叉搜索树:定义、区别与联系 #### 1. **定义** - **二叉排树(Binary Sort Tree)** 是一种特殊的二叉树结构,满足以下性质: 1. 若左子树非空,则左子树所有结点均小于根结点; 2. 若右子树非空,则右子树所有结点均大于根结点; 3. 左、右子树本身也是二叉排树[^4][^2]。 - **二叉搜索树(Binary Search Tree, BST)** 定义与二叉排树完全一致,仅名称不同。其核心性质是通过二分思想实现高效查找、插入和删除操作[^2][^5]。 #### 2. **区别与联系** - **名称差异** - **二叉排树**:强调中遍历结果是有列(即对数据排的支持)。 - **二叉搜索树**:强调基于二分法的快速搜索能力[^3]。 - **本质一致性** 两者是同一数据结构的不同名称,**无本质区别**。中文资料中常将二者混用,英文统称为 *Binary Search Tree (BST)*[^4]。 #### 3. **核心特性** - **有序性**:中遍历结果为升列,例如对树 $$T$$ 进行中遍历可得到 $$a_1 < a_2 < \dots < a_n$$[^4]。 - **高效操作**: - **查找**:时间复杂度为 $O(h)$($h$ 为树的高度),最优情况下为 $O(\log n)$(平衡树)。 - **插入/删除**:需保持有序性,可能导致树结构变化(如调整子树)[^5]。 #### 4. **应用场景** 1. 数据库索引结构(如B树的基础)。 2. 动态数据集合的快速检索与维护[^5]。 3. 排算法(通过中遍历直接输出有列)。 #### 5. **代码示例(查找操作)** ```c++ bool Find(const K& key) { Node* cur = _root; while (cur) { if (key < cur->_key) cur = cur->_left; // 左子树查找 else if (key > cur->_key) cur = cur->_right; // 右子树查找 else return true; // 找到目标 } return false; // 未找到 } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值