一、PIP
pip 是 Python 的包管理工具
1.安装依赖(pip)
- 预览当前环境下的依赖包
- 安装依赖
- 记录依赖信息
- 读取保存的依赖信息
pip list
pip install 依赖名
pip freeze > requirements.txt
pip install -r requirements.txt
2.依赖间的相互关系(pipdeptree)
- 安装
- 查看依赖树
pip install pipdeptree
pipdeptree
3.依赖治理(pip-autoremove)
- 安装
- 删除依赖及其相关联的依赖
pip install pip-autoremove
pip-autoremove 依赖名
二、Conda
pip 能基本解决单一项目的环境处理问题。但是由于 Python 是全局环境,如果有多个项目,我们就无法区分项目维度的依赖。Conda 是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换
Package, dependency and environment management for any language---Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, FORTRAN
1.安装Conda
Conda(https://github.com/conda/conda)有两个发行版本Miniconda和Anaconda
Miniconda,是包含conda及其依赖项的最小安装
Anaconda,是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项
官网下载Anaconda(Anaconda | Start Coding Immediately),并执行安装脚本
2.Anaconda命令行
Windows用户请打开“Anaconda Prompt”;macOS和Linux用户请打开“Terminal”(“终端”)进行操作
环境管理
- Anaconda版本
conda --version
- 创建一个纯净的 Python3.9 环境
- 并激活该环境
conda create -n demo python=3.9 -y
conda activate demo
- 查看已有环境列表
conda env list
- 查看当前环境下的依赖
conda list
- 退出环境
conda deactivate
- 为当前环境创建配置文件
- 加载配置文件到当前环境
conda env export > environment.yaml
conda env create -f environment.yaml
包管理
- 查找可供安装的包版本
- 在当前环境中安装包
- 卸载当前环境中的包
- 更新指定包
conda search <text>
conda install <package_name>
conda remove <package_name>
conda update <package_name>