英伟达GPU及架构

本文介绍了英伟达的GPU架构,包括Pascal™结构的GTX 1080TI、Turing架构的T4卡和Volta架构的V100。强调了在特定架构上进行序列化和测试的重要性。此外,还提到了NVIDIA TensorRT,它是一个高性能的神经网络推理引擎,用于深度学习应用的部署,依赖CUDA和libnvinfer,适用于不同版本的CUDA.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

英伟达

GTX 1080TI Pascal™ 结构

T4卡  基于Turing架构

P4卡  Pascal™ 结构

V100 基于Volta架构

在某一个架构上进行序列化, 就应该在这个架构上测试, 否则会报错

tensorRT:NVIDIA TensorRT是一种高性能神经网络推理(Inference)引擎,用于在生产环境中部署深度学习应用程序,应用有图像分类、分割和目标检测等,可提供最大的推理吞吐量和效率。TensorRT是第一款可编程推理加速器,能加速现有和未来的网络架构。TensorRT需要CUDA, libnvinfer的支持
 

cudnn/libnvinfer

cuda8/9/10

参考:https://www.zhihu.com/question/60161133

https://blog.csdn.net/fengbingchun/article/details/78469551

 

### NVIDIA GPU 架构详解 #### 早期架构发展 英伟达™(NVIDIA®)公司在1998年至2004年间推出了多个不同微体系结构的GPU,这些GPU虽然无法使用CUDA进行编程,但已经展示了摩尔定律效应下的技术进步,在此期间晶体管数量显著增长[^1]。 #### G80架构特点 到了G80架构阶段,英伟达实现了重大的突破。这是首个采用MIMD(多指令流多数据流)标量架构GPU系列,具备高达128个SP(流处理器)。尽管存在较高的功耗问题,它仍然是当时最为强劲的产品之一,并且配置了DDR3类型的显存来提升整体效能表现[^2]。 #### 现代架构演进 随着时代的发展,特别是进入人工智能和高性能计算领域之后,NVIDIA不断革新其GPU的设计理念和技术参数。自V100至最新的H100型号之间经历了多次迭代更新,每一次都带来了前所未有的技术创新与性能跃升。例如Pascal架构不仅吸引了众多深度学习爱好者的关注,还提供了更高效的并行处理能力以满足日益复杂的算法需求[^4]。 #### AI计算平台设计差异 对于专门构建的人工智能计算环境而言,Nvidia提出了两种不同的硬件部署方案——SXM版和PCIe版。前者利用了特制的高带宽接口实现极低延迟的数据交换;后者则是基于标准PCIE总线连接方式,适用于广泛存在的数据中心基础设施之中。值得注意的是,无论是哪种形式,都会配备相应的NVLink桥接器用来增强设备间的通讯速率和支持更大规模集群式的运算任务执行[^5]。 ```python # Python代码示例展示如何查询当前安装的NVIDIA驱动程序版本 import os def get_nvidia_driver_version(): try: result = os.popen('nvidia-smi').read() lines = result.split('\n') driver_line = [line for line in lines if 'Driver Version' in line][0] version = driver_line.strip().split()[-1] return f"NVIDIA Driver Version: {version}" except Exception as e: return str(e) print(get_nvidia_driver_version()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值