自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

宅男很神经

宅男很神经

  • 博客(831)
  • 收藏
  • 关注

原创 【Python】自然语言2

要驱动一个能够并行解析, , 的模型,我们的数据表示方法必须进行一次彻底的升维。单个的隐式元素标注已经远远不够,我们需要一种能够清晰、无歧义地描述“哪个元素是隐式的、它的答案在上下文的何处”的全新数据结构。8.4.1 数据单元的最终形态:我们需要一个新的数据类,它能够灵活地表示一个比较句中任意元素组合(E1, E2, Aspect)的显式/隐式状态,并为每一个隐式元素精确地提供其在上下文中的“答案”。8.4.2 终极预处理器:这个预处理器是整个数据工程的巅峰之作。它的职责是解析,并为中的每一个并行的指针头

2025-06-10 20:45:02 557

原创 【Python】自然语言

传统的情感分析起点,往往是或。这种方法将文本视为一堆词的集合(Bag-of-Words),忽略了词序、语法和深层语义。其本质是将每个词视为一个独立的、正交的维度。在一个包含N个唯一词的词汇表中,"高兴"可能被表示为 ,而"开心"则被表示为 。从线性代数的角度看,这两个向量是正交的。它们的点积为0,意味着在模型看来,"高兴"和"开心"毫无关系。这便是语义鸿沟(Semantic Gap)。模型无法理解这两个词在人类语言中几乎是同义词。同样,它也无法理解"国王"与"王后"的关系,类似于"男人"与"女人"的关系。T

2025-06-10 20:07:13 155

原创 【Python】 循环神经网络(RNN)算法详解

一个标准的前馈网络,其信息流是单向的、无循环的——从输入层,流经一个或多个隐藏层,最终到达输出层。在任何一个时刻,网络对一个输入样本的处理,与其他任何样本的处理都是完全独立的(Independent)。它对当前输入的“凝视”,是毫无记忆的。原创性隐喻:“失忆的先知(The Amnesiac Oracle)”一个前馈网络,就像一位拥有强大计算能力,但却患有严重短期记忆丧失症的“失忆先知”。对于序列数据而言,这种“失忆症”是致命的。因为序列数据的核心价值,恰恰在于其上下文(Context)——即当前元素与其前后

2025-06-09 23:40:42 638

原创 【Python】Python Click库

在没有任何工具的帮助下,我们与命令行的唯一沟通方式,就是通过模块中的列表。是一个包含了所有命令行输入的原始字符串列表,其中第一个元素永远是脚本自己的名字。让我们来体验一下这种“刀耕火种”时代的开发方式。假设我们要写一个简单的脚本,它接收一个参数来指定问候的对象,以及一个参数来指定问-候的次数。编码 ():运行这个脚本,你会发现它能工作,但其脆弱性和复杂性暴露无遗:这就是的原始混沌。在这种混沌中构建复杂的CLI,无异于用泥土和茅草去建造摩天大楼。现在,让我们见证Click如何用一个简单的“咒语”,将上述的混

2025-06-09 23:08:40 385

原创 【Python】Vosk

在过去的几十年里,自动语音识别的主流技术,一直被一个强大而复杂的模型所统治——隐马尔可夫模型-高斯混合模型(HMM-GMM)。我们可以用一个原创性的类比来理解它的工作哲学。HMM-GMM的工作哲学:“精密的音素流水线”想象一下,语音识别是一个巨大的、精密的钟表工厂,其目标是将一连串的“齿轮震动声”(音频特征)组装成一块能显示正确“时间”(文字)的成品手表。第一站:声学模型车间 (Acoustic Model - GMM)第二站:发音词典车间 (Pronunciation Lexicon)第三站:语言模型车间

2025-06-09 22:35:15 377

原创 【Python】VAD

在数字信号处理的广袤世界里,语音活动检测(VAD)是最基础、最核心,却也最常被低估的任务之一。它看似简单——不就是判断一段音频里有没有人说话吗?——但这个简单的“是”或“否”的背后,却是一个连接着物理声学、数字信号处理、统计模式识别乃至现代深度学习的复杂技术体系。一个高效、鲁棒的VAD系统,是构建几乎所有高级语音应用(如自动语音识别ASR、声纹识别、智能客服、会议转写)的基石。没有它,后续的系统将被海量的、无意义的静默或噪声数据所淹没,导致计算资源的巨大浪费和核心算法性能的急剧下降。要让计算机处理声音,我们

2025-06-09 21:33:57 717

原创 【Python】python-pptx

要真正精通 ,就必须跳出 API 的表层,深入其操作的本质——Office Open XML (OOXML) 格式。任何一个 文件,其核心都是一个遵循特定规范的 ZIP 压缩包,里面包含了定义演示文稿结构、内容、格式和关系的 XML 文件。 的所有操作,最终都会被翻译成对这些 XML 文件的读写和修改。本章将以前所未有的深度,带您解构这个 XML 世界,为您掌握 打下最坚实的理论基础。一个看似简单的 文件,实际上是一个结构化的文件系统。我们可以通过编程的方式或者手动修改后缀名为 来探索它的内部。这种

2025-06-09 20:01:32 423

原创 【Python】Haystack2

在构建和优化 RAG(检索增强生成)系统时,仅仅凭直觉或少数几个测试用例来判断其性能是远远不够的。为了系统地改进 RAG 流程,我们必须能够客观、量化地评估其各个组件的性能,特别是核心的检索器(Retriever)。检索器负责从海量文档中召回与用户查询最相关的上下文,其性能直接决定了后续 LLM 生成答案的质量和准确性。2.6.1 为什么需要评估检索器?对检索器进行严格的性能评估是至关重要的,原因如下:2.6.2 评估基础:相关性标注与测试集构建所有检索评估的基础都是相关性标注(Relevance Labe

2025-06-08 23:51:16 549

原创 【Python 】Haystack

大语言模型,如 OpenAI 的 GPT 系列、Google 的 PaLM 2/Gemini、Meta 的 Llama 系列以及 Anthropic 的 Claude,是基于海量文本数据(通常是万亿级别甚至更多的数据量)通过深度学习技术训练出来的巨型神经网络。它们的核心能力在于预测下一个词元(token),这使其能够执行一系列令人惊叹的语言任务。文本生成(Text Generation):语言理解(Language Understanding):多模态处理(Multimodal Processing):推理

2025-06-08 23:40:05 855

原创 【Python 】Unity

自诞生以来,C# 语言就如同血液一般,流淌在Unity引擎的每一个角落。它强大、高效、类型安全,是构建游戏运行时(Runtime)逻辑的无可争议的王者。对于编辑器扩展开发而言,Unity同样提供了丰富的C# API,让开发者能够创建自定义的检视面板(Inspector)、编辑器窗口(Editor Window)、场景小工具(Gizmos)以及自动化处理流程。长久以来,这条纯C#的开发路径是所有Unity开发者所熟悉和依赖的唯一范式。然而,随着游戏开发的复杂度日益提升,项目规模不断扩大,内容生产流程变得愈发盘

2025-06-08 23:09:35 567

原创 【Python】Python设计模式

Python语言本身的设计,就已经蕴含了许多设计模式的思想。在我们学习具体模式之前,认识到这些语言层面的“内建模式”至关重要,因为它们往往是解决特定问题的首选方案。装饰器 (Decorators): 这是对经典装饰器模式 (Decorator Pattern) 和 代理模式 (Proxy Pattern) 的直接语法级支持。它允许我们以一种声明式、非侵入的方式,为函数或类附加额外的职责,如日志记录、性能测试、事务处理、权限校验等。上下文管理器 (Context Managers): 语句和、方法,是资源管理

2025-06-08 21:46:41 534

原创 Python微分方程可视化——斜率场、振动系统与生态模型

在微分方程的世界里,一个方程,如 ( \frac{dy}{dx} = f(x, y) ),不仅仅是一个抽象的数学表达式。它是一个宣言,描述了在 (xy) 平面上的每一个点 ((x, y)),一个解曲线经过该点时必须拥有的瞬时斜率。斜率场(Slope Field),或称为方向场(Direction Field),就是将这个宣言以图形化的方式公之于众的“布告板”。它不是解,而是所有可能解的内在约束和行为模式的可视化蓝图。理解斜率场,就是掌握了解曲线家族的“遗传密码”。传统定义将斜率场描述为在平面上每个点绘制一小

2025-06-08 20:44:31 737

原创 【Python】llama-cpp-python 库

GGUF (GPT-Generated Unified Format) 并不仅仅是一个简单的键值对(Key-Value)存储。它是一种精心设计的、面向内存映射(memory-mapping)和快速加载的二进制格式。其设计的核心思想在于,将模型的“描述信息”(元数据)和“实体数据”(张量权重)分离但又统一管理,使得加载器可以极速读取描述信息,并根据需要将权重张量直接映射到内存或显存中,从而最大化减少启动延迟和内存拷贝开销。每一个 GGUF 文件都以一个独特的“魔法数字”开头。这个数字 在 ASCII 中代表

2025-06-08 19:53:01 813

原创 【Python】二分查找

二分查找的惊人效率,并非凭空而来。它建立在一个简单、牢固、但绝不容妥协的基石之上:待查找的序列必须是有序的。这个前提,是二分查找算法的“灵魂契约”,一旦违背,整个算法的逻辑将瞬间崩塌。为了理解这一点,让我们想象一个游戏:“猜数字”。无序场景: 我从1到100之间随便想一个数字,不告诉你任何规律。你来猜。有序场景: 我还是从1到100之间想一个数字,但我告诉你:“你每猜一个数,我都会告诉你,我心中的数比你猜的‘大’还是‘小’。”这个“猜数字”游戏,完美地诠释了有序性的价值。有序性提供了一种可预测的单调关系。正

2025-06-08 00:15:49 540

原创 【Python】计数排序

为了理解计数排序的革命性,我们必须首先理解它所要颠覆的“旧秩序”的边界在哪里。这个边界,可以通过一种名为**决策树(Decision Tree)**的抽象模型来清晰地描绘。一个针对特定输入规模的比较排序算法,其整个执行过程可以被建模为一棵二叉树。一个简单的例子:对3个元素 进行排序假设输入是 。为了得到一个排好序的序列,我们需要确定这三个元素之间的大小关系。下面是对3个元素进行排序的一个可能的决策树:(这是一个示意图,实际内容会用文字描述)第一次比较: 。如果为,我们知道 在 前面。我们接下来

2025-06-07 23:37:07 826

原创 【Python】堆排序

从本质上讲,堆是一种特殊的、基于树形结构的数据结构。

2025-06-07 22:59:11 930

原创 【Python】归并排序

一个排序算法是稳定的,如果它能保证在排序完成后,所有值相等的元素,其原始的相对顺序保持不变。

2025-06-07 22:10:58 818

原创 【Python】快速排序

“分而治之”是一种强大而普适的算法设计范式,它将一个难以直接解决的大问题,分解为两个或多个与原问题形式相同、但规模更小的子问题,然后递归地解决这些子问题。当子问题的解被求出后,再将它们合并,从而得到原问题的解。快速排序是“分而-治之”思想最经典、最纯粹的体现。它的整个生命周期,都围绕着一个核心动作展开:分割(Divide): 这是快速排序的灵魂。从待排序的数组(或子数组)中,挑选出一个元素,我们称之为**“基准”(Pivot)。然后,重新排列数组中的其他所有元素,使得所有小于基准的元素都被移动到基准的左边,

2025-06-07 21:33:46 966

原创 【Python】插入排序

插入排序最重要的、在现代软件工程中最具实际意义的应用,并非是作为一个独立的排序算法存在,而是作为更复杂、更高效的排序算法(如Timsort、Introsort)的子程序(Subroutine)或收尾工具(Finishing Tool)。

2025-06-07 21:20:58 765

原创 【Python】选择排序

我们已经探讨过如何通过在自定义类中实现富比较方法(如__lt__)来让选择排序处理复杂对象。然而,这种方法有一个显著的局限性:它要求我们必须能够修改类的源代码。如果我们正在处理的是一个来自第三方库的类,或者我们希望根据不同的、临时的业务逻辑对同一个对象列表进行多种方式的排序(例如,有时按年龄排序,有时按薪水排序),那么修改类本身就变得不可行或不优雅。key函数和(历史上的)cmp函数。将这些机制集成到我们的选择排序实现中,是将其从一个只能处理简单数值的“玩具”提升为一个通用排序工具的关键一步。

2025-06-07 21:02:23 896

原创 【 Python】冒泡排序

在一个数组A中,如果存在一对索引(i, j)满足i < j但,那么就构成一个逆序对。一个完全有序的数组(升序),其逆序对数量为0。一个完全逆序的数组,其逆序对数量为,即C(n, 2),因为每一对元素都是逆序的。一个随机数组的“无序程度”就可以用其包含的逆序对数量来衡量。排序的本质,就是消除所有逆序对的过程。在 Python 2 中,sort方法接受一个cmp函数,该函数接收两个参数a和b,如果a < b返回负数,a == b返回0,a > b返回正数。Python 3 废弃了cmp,推荐使用。

2025-06-07 20:38:46 837

原创 【Python】常见算法2

冒泡排序是一种基础的、基于比较的排序算法。尽管在实际生产环境中因其效率低下而鲜有使用,但它作为教学工具的价值是无与伦比的。它完美地展示了“比较与交换”这一排序算法的基本构建块,并为理解更复杂算法(如快速排序中的分区思想)提供了概念上的基石。冒泡排序的核心思想可以概括为:在无序的元素序列中,通过相邻元素的重复比较与交换,将当前未排序部分中的最大(或最小)元素像气泡一样“浮”到序列的一端。这个过程是迭代进行的。每一轮完整的迭代(称为一次“趟”或“pass”)都会将一个元素放置到其最终的、已排序的位置上。如果一个

2025-06-07 20:26:14 809

原创 【Python】算法基础知识

第一章:算法的度量衡 —— 时空复杂度分析与Python性能陷阱在踏上算法探索的征途之前,我们必须先锻造好我们的度量工具。没有度量,就无法比较;没有比较,就无法选择;没有选择,就无法优化。在算法的世界里,这个度量衡就是“时空复杂度”。1.1 为何需要复杂度分析?—— “跑一下代码看看”的局限性一个初学者在比较两个算法(例如,两种不同的排序方法)的优劣时,最直观的想法可能是:“我把这两个算法都实现出来,然后用同一个大列表去跑一下,看看哪个花的时间短。”这是一种基于经验的测试方法,它在某些情况下有用,但作为一种

2025-06-06 23:49:08 835

原创 【Python】pywin32库的使用

第一章:初探pywin32:Windows的Python化身1.1 何为pywin32?为何需要它?在Python的世界里,我们习惯了、、等库提供的跨平台能力,它们为我们抽象了不同操作系统之间的差异,让我们能够编写“一次编写,到处运行”的脚本。然而,这种高度的抽象也意味着我们牺牲了对特定操作系统底层功能的控制力。当我们的需求超越了标准库所能提供的范畴,特别是当我们需要与Windows操作系统的核心功能进行深度交互时,我们就需要一个能够直接“对话”Windows的工具。正是为此而生的。它不是一个创造新功能的库

2025-06-06 23:29:06 915

原创 【Python】串口通信库pyserial2

6.8 多传感器融合:YOLO与激光雷达/雷达数据的深度结合6.8.1 引言:为什么需要非视觉传感器——以激光雷达为例摄像头因其丰富的信息(颜色、纹理、形状)而成为自动驾驶、智能监控等视觉感知系统的核心。但其固有的局限性不容忽视:**激光雷达(LiDAR)**作为一种主动式测距传感器,通过发射激光束并测量反射回来的时间来精确计算物体距离。它能生成高密度的三维点云数据,直接提供目标的精确三维位置信息。激光雷达的优势:激光雷达的局限性:显然,摄像头擅长“识别是什么”,激光雷达擅长“识别在哪里,有多远”。将两者融

2025-06-06 23:04:06 748

原创 【Python】串口通信库pyserial

1.1 串行通信究竟是什么?我们常常听到一个简化的定义:“一次只传输一个比特的数据”。这个定义是正确的,但缺乏深度。为了真正理解它,让我们构建一个更生动的模型。想象一条高速公路。一条**并行总线(Parallel Bus)**就像一条有16条车道的高速公路。在一个时钟周期(绿灯亮起),16辆车(代表16个比特)可以同时从A点出发并到达B点。这非常快,但也极其昂贵和复杂——你需要修建和维护16条车道,并确保所有车辆(信号)能完美同步地到达,否则就会造成混乱。在早期,计算机内部的打印机接口就采用了这种方式。而串

2025-06-06 22:41:35 890

原创 YOLO 从零开始

在YOLO横空出世之前,目标检测领域被以 R-CNN (Regions with CNN features) 家族为代表的“双阶”(Two-Stage)检测器所统治。理解双阶检测器的工作流程,是理解YOLO革命性意义的关键。1.1 R-CNN家族:精雕细琢的“学院派”想象一位侦探在犯罪现场寻找线索。他不会一眼就看遍整个房间然后指出所有证物。相反,他会先仔细地识别出所有“可能”是证物的区域(比如一个花瓶、一块地毯、一张纸片),然后拿起放大镜,对每一个可疑区域进行独立、细致的检查,最终判断出它到底是不是证物,以

2025-06-06 21:54:02 700

原创 【Python】PySpark数据分析

我们首先需要理解一个根本性的问题:我们为什么需要像 Spark 这样的工具?答案源于一个物理现实——单台计算机的局限性。在数据科学的日常工作中,我们钟爱的 库在一台性能优越的机器上可以轻松处理数百万行的数据。然而,当数据规模从 GB 级别跃升至 TB 甚至 PB 级别时,物理定律开始成为不可逾越的障碍。内存瓶颈 (Memory Bottleneck): 当一个数据集的大小超过了计算机的物理内存(RAM)时,操作系统会开始使用虚拟内存,即把硬盘空间当作内存使用。硬盘的读写速度比内存慢数个数量级(机械硬盘慢

2025-06-06 20:55:37 731

原创 【Python】Python 与 Neo4j 交互(py2neo 使用)

在 Neo4j 的世界中,属性(Properties)并不仅仅是节点(Node)和关系(Relationship)的简单附庸。它们是构成图数据丰富语义的核心元素,是模型表达能力和查询性能的关键所在。将属性理解为一等公民,是从入门到精通的必经之路。属性是一个键值对(Key-Value Pair)集合,其中键(Key)是一个字符串,而值(Value)可以是多种原生数据类型。原生数据类型及其内部机制:数值类型(Numeric Types):字符串类型(String Type):布尔类型(Boolean

2025-06-06 20:15:45 821

原创 【Python】GPU加速计算 2

3.1 CUDA C++ 编程基础在这一节中,我们将涵盖构成任何CUDA C++程序骨架的基本元素。3.1.1 CUDA C++ 源文件结构与编译流程一个CUDA程序通常包含两部分代码:在主机(CPU)上运行的主机代码,和在设备(GPU)上运行的设备代码。CUDA C++的强大之处在于,它允许我们将这两部分代码无缝地编写在同一个源文件中。a. 源文件CUDA C++的源文件通常使用 作为文件扩展名(有时也用 表示头文件)。编译器通过这个扩展名来识别文件中可能包含CUDA特定的语法,如核函数启动语法 (

2025-06-06 19:33:15 1022

原创 【Python】GPU加速计算

第一章:GPU并行计算的黎明:为何选择CUDA与Python?1.1 计算的瓶颈:从CPU的极限到并行计算的呼唤自集成电路问世以来,计算能力的提升在很大程度上遵循着戈登·摩尔(Gordon Moore)提出的摩尔定律——集成电路上可容纳的晶体管数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。这一经验性的观察在过去半个多世纪里,奇迹般地指引着半导体产业的发展方向,也使得CPU的性能以惊人的速度迭代。我们经历了从单核到多核,从MHz到GHz的时钟频率飙升,CPU架构也变得日益复杂,通过引入更深的流水线

2025-06-06 00:14:05 2133

原创 【Python】理解subprocess2

6.7 构建复杂的异步子进程管道 (Chaining Asynchronous Processes)在Shell(如Bash)中,管道(pipe, )是一种强大的特性,它允许将一个命令的输出(stdout)直接作为另一个命令的输入(stdin)。例如, 会列出当前目录的详细文件信息,然后筛选出包含的行,最后统计行数。使用,我们也可以构建类似的异步子进程管道。这在需要将多个外部命令串联起来处理数据流,而又不希望将中间数据存盘或一次性读入内存时非常有用。实现异步管道的核心思想是:6.7.1 方法一:使用和在协程

2025-06-05 23:14:39 932

原创 【Python】理解subprocess

第一章:进程管理基础与模块的诞生在深入模块之前,我们首先需要理解一些操作系统层面的进程管理基础知识,以及Python中进程创建方式的演变历程。这有助于我们更好地理解模块的设计理念和它所解决的问题。1.1 什么是进程?在操作系统中,进程 (Process) 是计算机程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位。简单来说,当你运行一个程序(例如,一个Python脚本、一个文本编辑器或一个Web浏览器)时,操作系统会为该程序创建一个或多个进程。每个进程都拥有其独立的内存空间、数据栈以及其

2025-06-05 22:52:35 601

原创 Python----经典神经网络

Python 与经典神经网络:深度探索与实战第一卷:神经网络基石第一章:神经网络概览与历史背景1.1 人工智能、机器学习与神经网络的关系人工智能 (Artificial Intelligence, AI)、机器学习 (Machine Learning, ML) 和神经网络 (Neural Networks, NN) 是三个紧密相关但又有所区别的概念,常常被提及甚至混用。理解它们之间的层级与从属关系至关重要。人工智能 (AI):这是一个最广泛的概念,其目标是创造能够模拟、延伸和扩展人类智能的理论、方法、技术及

2025-06-05 22:24:20 863

原创 【Python】Pygame从零开始学习3

场景图是一种树形数据结构,常用于计算机图形学和游戏开发中,用来组织和管理场景中的对象(通常称为节点)。在这个层次结构中,每个节点可以有自己的属性(如位置、旋转、缩放)、子节点,以及一个指向其父节点的引用(根节点除外)。想象一下太阳系:太阳是中心节点。地球是太阳的一个子节点,它有自己的公转(相对于太阳的变换)和自转(局部变换)。月球是地球的子节点,它继承了地球相对于太阳的变换,并加上自己相对于地球的公转和可能的自转。场景图以类似的方式组织游戏世界中的对象。场景图提供了一系列优势,使得复杂场景的管理更加高效和直

2025-06-05 20:26:53 967

原创 【Python】Pygame从零开始学习2

Pygame 使用 模块来处理所有与音频相关的功能,包括播放短促的音效和较长的背景音乐。与 joystick 模块类似,mixer 模块也需要在使用前进行初始化。 用于初始化 mixer 模块。它有一些可选参数,可以控制音频的播放质量和特性:初始化示例:重要:Pygame 的 模块对这两种类型的音频有不同的处理方式:音效 ():背景音乐 ():加载音效文件:播放音效:停止音效:设置音量:淡出音效:获取音效长度:11.4 声道 (Channels)Pygame mixer

2025-06-05 19:28:22 807

原创 【Python】Pygame从零开始学习

本模块将引导您完成 Pygame 的安装,并深入理解 Pygame 应用程序的基石——游戏循环、事件处理、Surface 与 Rect 对象、显示控制以及颜色管理。Pygame 是一组专为编写视频游戏而设计的 Python 模块。它构建在优秀的 SDL (Simple DirectMedia Layer) 库之上,允许您使用 Python 语言创建功能齐全的游戏和多媒体应用程序。SDL 库本身提供了跨平台的底层硬件访问,包括音频、键盘、鼠标、游戏杆和图形硬件(通过 OpenGL/DirectX)。Pygam

2025-06-05 18:56:01 1016

原创 【Python】TensorFlow 深度学习3

Keras 允许我们通过继承类并重写其方法来创建自定义的回调函数。这为我们提供了极大的灵活性,可以在训练过程的任何点插入自定义逻辑。在训练过程中打印特定信息或进度。在每个 epoch 结束时执行自定义评估(例如,计算 F1-score、AUC)。在训练过程中动态调整学习率(除了之外的更复杂策略)。可视化中间层的激活或特征图。在达到特定性能指标时发送通知(例如,邮件、Slack 消息)。要创建自定义回调,你需要继承并重写你感兴趣的方法。在这些方法内部,你可以访问self.model。

2025-06-05 18:12:39 1031

原创 【Python】TensorFlow 深度学习2

Keras 的核心在于其“层”的概念。层是神经网络的基本构建块,它们封装了输入数据、权重(可训练参数)、偏置项,并定义了如何将输入数据转换为输出数据的计算逻辑(前向传播)以及如何更新这些参数(反向传播)。Keras 提供了丰富的预定义层,涵盖了深度学习中的绝大多数常见操作。理解和灵活运用这些层是构建高效神经网络的关键。尽管不同类型的层执行不同的功能,但它们都共享一些通用的属性和方法,这些是 Keras API 设计一致性的体现。常用属性:常用方法:2.3.2 核心 Keras 层 (Core Keras

2025-06-05 18:04:09 722

原创 【Python】 TensorFlow 深度学习

深度学习并非一蹴而就的概念,它的思想萌芽可以追溯到上世纪四五十年代。早期萌芽 (1940s - 1960s):连接主义的复兴与反向传播 (1980s - 1990s):低谷与挑战 (1990s - 2000s 初):深度学习的突破与爆发 (2006s - 至今):理解深度学习,需要掌握以下几个核心概念:神经网络 (Neural Networks):特征学习 (Feature Learning) / 表示学习 (Representation Learning):层次化特征提取 (Hierarchical Fe

2025-06-05 17:43:39 861

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除