自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(396)
  • 资源 (4)
  • 收藏
  • 关注

原创 2025.02.26【图片复现L1】|基于Cursor复现生信分析图片工作流程

在论文发表、项目申报等场景中,生信人员经常需要生成各种可视化图表来辅助分析和展示研究结果。而想要发好文章,我们通常会参考别人发表的高分论文,希望能复现其中的图片效果。社群里也经常有小伙伴在问这个图怎么做,那个图用什么工具画。我之前一直想做一个可以帮科研人员复现图片的功能,也尝试过用AI模型搭工作流,制作在线工具,但是绘制出来的图片总是离想要的图片相去甚远。

2025-02-27 08:30:00 1291

原创 2021.07.30【WGS/GWAS】丨全基因组分析全流程(上)

目录摘要命令行三级目录摘要时隔半年,终于把WGS前面的分析用snakemake搭建好了。读者不要嫌我慢,确实是项目不多,流程也不算特别复杂。之前的shell脚本也能用,因此迟迟没有真正搭建。现在项目慢慢多了,考虑到提升工作效率,趁着前几天做了2个WGS的项目,把这个流程梳理出来。命令行#vim: set syntax=python#__author__ = "Yang Xin"#__copyright__ = "Copyright 2021, Wang lab"#__email__ = "4

2021-07-30 17:05:54 4870 5

原创 2020.11.9【WGS/GWAS】丨全基因组分析(关联分析)全流程(下)

经过为期半个月的~~东拼西凑~~ 研发测试,作者终于整理出了一个从VCF开始的GWAS后期分析流程。当然要感谢很多大佬提供的~~代码~~ 帮助,在文章中也附上参考链接。对GWAS还不够熟悉的朋友,可以看一下我之前整理的一份PPT学习笔记[《遗传进化与GWAS研究》](https://blog.csdn.net/yangl7/article/details/108486232)。

2020-11-09 14:36:28 18448 10

原创 2025.07.08【组装】|BUSCO评估结果解读与R统计绘图

摘要: BUSCO是评估基因组/转录组完整性的权威工具,通过检测单拷贝直系同源基因(BUSCO基因)进行分析。结果文件中的关键指标包括完整基因(C,含单拷贝S和多拷贝D)、片段化(F)和缺失(M)基因。为直观展示结果,推荐使用R脚本绘制分组堆积柱状图:将C拆分为S和D堆积显示,F和M独立成柱,避免重复统计歧义。脚本自动解析short_summary.txt文件,生成可视化图表(PNG格式),颜色区分不同类型并标注百分比。该方法科学清晰,适合批量分析,提升结果解读效率。 (字数:150字)

2025-07-08 17:13:21 229

原创 2025.07.04【服务器】|使用万兆网卡提升服务器间互联速度,实现快速数据传输

万兆网卡(10GbE, 10 Gigabit Ethernet)是目前广泛应用于高性能计算、数据中心、存储系统等场景中的高速网络接口。相比于传统的千兆网卡(1GbE),万兆网卡提供了10倍以上的带宽,能够大大提高数据传输速度。万兆网卡的应用不仅限于高速数据传输,它还可以有效减少网络延迟,提升大规模并发数据流的处理能力。无论是文件传输、虚拟化应用还是高性能计算,万兆网卡都能显著改善网络性能。

2025-07-04 11:26:25 1066

原创 2025.07.04【转录组】| RNA-seq 组装“瘦身术”——BBNorm 归一化处理

摘要:本文介绍如何使用BBNorm工具对大规模RNA-seq数据进行数字归一化处理,显著降低内存和计算资源消耗。文章详细讲解了BBNorm的工作原理、安装方法、关键参数设置,并通过1.1TB数据的实际案例展示归一化效果(缩减83%文件大小)。同时提供了进阶技巧、常见问题解决方案及与其他归一化工具的对比。BBNorm作为BBTools套件中的高效工具,能保留低丰度转录本信息,大幅提升后续RNA-seq组装的可行性,是处理超大规模转录组数据的实用解决方案。(150字)

2025-07-04 11:21:58 142

原创 2025.07.01【转录组】无参转录组组装软件横向评估

摘要:本文对比了四种主流无参转录组组装工具(rnaSPAdes、Trinity、SOAPdenovo-Trans、Trans-ABySS)的关键特性。rnaSPAdes安装便捷、运行高效,适合大数据自动化;Trinity组装质量最优但资源消耗大;SOAPdenovo-Trans速度最快但安装复杂;Trans-ABySS支持多k-mer组装。选择建议:新手优先rnaSPAdes,追求质量选Trinity,超大数据用SOAPdenovo-Trans,复杂样本考虑Trans-ABySS。

2025-07-01 11:39:11 35

原创 2025.06.30【L0知识整合】|近期生信+AI技术盘点

近年来(2022-2024),生物信息学与AI融合加速发展,涌现出多个创新方向。AI驱动的多组学分析平台(如Deep Genomics、百图生科)利用深度学习处理基因组数据;单细胞组学领域(Parse Biosciences)应用AI提升数据分析精度;蛋白质预测(Helixon)基于AlphaFold2模型取得突破;临床组学(Tempus)实现AI辅助诊疗决策;生信SaaS平台(Bioturing)提供零代码分析服务;药物发现(Insilico Medicine)采用生成式AI设计新分子;大模型技术(Bio

2025-06-30 14:25:09 996

原创 2025.06.27【技术观察L0】AlphaGenome:DeepMind推出的全新AI基因组解读平台

Google DeepMind推出AlphaGenome AI平台,革新基因组学研究。该平台采用CNN+Transformer混合架构,能处理长达100万碱基对的DNA序列,同时预测基因起止点、RNA表达、染色质可及性等多种分子属性。其核心突破在于单一模型实现多模态分析,并提供变异效应高通量评估,在24/26项任务中超越现有最佳模型。AlphaGenome已开放API预览版,将助力疾病机制研究、合成生物学及基础基因组学探索,为精准医学带来新工具。

2025-06-27 12:15:10 937

原创 2025.06.27【微生物】|PlasFlow安装全流程详解(含依赖版本与环境配置)

PlasFlow是一款基于深度学习的质粒识别工具,但其安装过程因依赖版本问题常遇困难。本文详细介绍了PlasFlow的安装流程,包括必须使用Python 3.5环境、keras==2.0.8和tensorflow==1.2.1等特定版本依赖,以及通过conda创建隔离环境的步骤。同时提供了源码安装方法、模型文件准备和使用示例,并针对常见问题如protobuf版本冲突等给出了解决方案。该指南适用于Linux系统或Windows WSL,帮助用户顺利完成PlasFlow的安装和配置。

2025-06-27 11:46:41 933

原创 2025.06.26【微生物】PathoScope安装与使用详解:微生物丰度定量分析全流程

PathoScope是一款基于贝叶斯方法的微生物分类与丰度估算工具,支持16S、宏基因组和转录组等多种数据类型。该工具通过比对测序reads与参考数据库,进行精确的微生物分类和定量分析。安装推荐使用Bioconda(需Python 2.7环境),分析流程包括构建参考数据库、比对reads和定量分析三个主要步骤。输出结果包含基因组名称、reads分配百分比、置信度等信息,以TSV格式呈现。PathoScope能够高效准确地解析微生物群落结构,适用于复杂样本分析,结果可用Excel或R进一步处理和可视化。

2025-06-26 16:55:40 784

原创 2025.06.26【微生物】|QIIME2分析ONT扩增子数据的标准流程

本文介绍了使用QIIME2分析Oxford Nanopore(ONT)全长16S扩增子数据的完整流程。主要内容包括数据导入、去冗余、97%相似度OTU聚类、去嵌合体、物种注释及可视化分析等步骤,并详细说明了manifest和metadata文件的格式要求。针对ONT数据特点,文章建议进行预过滤并使用全长16S数据库注释,同时提供了可选多样性分析方案。该流程能够高效完成多样本微生物群落分析,为研究者提供了一种可靠的ONT扩增子数据处理方法。

2025-06-26 14:18:51 820

原创 2025.06.25【微生物】|Emu工具安装与使用详解:全长16S扩增子微生物丰度分析

Emu是一款基于贝叶斯方法的微生物多样性分析工具,专为处理高错误率的长读长16S/18S扩增子数据优化。本文详细介绍了Emu的安装与使用方法:1)通过conda创建独立环境并安装Emu;2)提供SILVA等预构建数据库的下载指南,并说明自定义数据库的构建方法;3)演示单样本和多样本分析流程,解读关键输出文件;4)介绍丰度表合并、分类等级汇总等实用功能扩展;5)建议后续分析方向。文章还附有官方GitHub链接和相关文献资源,为微生物群落结构研究提供了一套完整的分析解决方案。

2025-06-25 12:00:03 661

原创 2025.06.24【R语言】|clusterProfiler安装与常见报错FAQ全解

本文介绍了clusterProfiler工具的安装方法及常见报错解决方案。安装可通过Bioconductor或Conda完成,需注意安装配套注释包。文中列举了10种常见报错,包括依赖包缺失、ID类型不匹配、物种不支持等问题,并给出具体解决方法。最后总结了GO/KEGG富集分析的标准流程,包括ID转换、富集分析和可视化步骤,为生物信息学分析提供实用参考。建议使用R≥4.2版本,并确保正确调用BiocManager进行安装。

2025-06-24 11:39:03 847

原创 2025.06.24【R语言】|clusterProfiler:R语言功能富集工具安装与使用说明

clusterProfiler 是R/Bioconductor生态中最流行的功能富集分析包之一,由于其强大的兼容性、丰富的可视化和灵活的接口,广泛应用于转录组、蛋白组、表观组等多组学数据的生物学意义挖掘。

2025-06-24 10:54:03 1367

原创 2025.06.23【甲基化】|methylKit常见疑难解答与实用技巧(FAQ)

本文整理了R包methylKit使用中常见问题与实用技巧,包括输入文件格式要求、大数据内存优化方法、多样本合并策略、结果注释流程等关键内容。针对报错"Error: object ‘key<-’ is not exported"和"libRblas.so缺失"等典型问题提供了解决方案,并介绍了如何读取特定格式文件、导出可视化数据等实用操作。文章结合官方文档和社区经验,旨在帮助用户高效解决甲基化数据分析中的技术难题,提升分析效率。适用于需要处理高通量甲基化测序数据的

2025-06-23 12:12:36 897

原创 2025.06.23【甲基化】methylKit:甲基化测序数据分析安装与详细使用教程

摘要: methylKit是R语言中用于分析高通量亚硫酸盐测序数据的专业工具包,支持RRBS、WGBS等技术的甲基化数据分析。主要功能包括数据读取、甲基化水平统计、差异甲基化检测、基因组注释及可视化。安装可通过Bioconductor或Conda完成,建议R≥4.0版本。分析流程涵盖数据读取、过滤质控、样本合并、差异分析及功能注释,支持多种输入格式和大数据处理。methylKit简化了从原始数据到生物学解释的全流程,是甲基化研究的实用工具,具体操作可参考官方文档和教程。

2025-06-23 12:01:39 927

原创 2025.06.20【pacbio】|PB甲基化分析结果的统计与可视化介绍

本文介绍了PacBio甲基化数据的统计分析与可视化方法。主要内容包括:1) 分析甲基化位点分布、比例及染色体分布;2) 修饰基序(Motif)的统计与热图展示;3) 全基因组和局部区域测序深度可视化;4) 使用IGV查看单个reads修饰情况。文章提供了R代码示例,涵盖柱状图、分布图、热图等多种可视化形式,并建议了差异甲基化分析等进阶方法,帮助科研人员深入挖掘甲基化数据。

2025-06-20 12:18:55 1347

原创 2025.06.20【pacbio】|使用Snakemake构建可重复的PacBio全基因组甲基化分析流程

本文介绍了一个基于Snakemake的自动化流程,用于分析PacBio SMRT测序数据的DNA甲基化。流程涵盖从原始数据比对到甲基化检测的全过程,包含参考基因组索引构建、序列比对、修饰位点识别等核心步骤。通过配置文件和样本信息文件实现参数自定义,确保结果可重复性。该流程整合了pbmm2、ipdSummary等PacBio官方工具,并通过自动化处理减少手动操作错误,适合批量分析多个样本。输出文件包括GFF格式修饰位点、CSV统计表以及可视化文件,为表观遗传学研究提供完整分析方案。

2025-06-20 12:06:28 1158

原创 2025.06.18【转录组】|Ribo-seq/small RNA数据分析:rRNA和smRNA比对率统计全流程

本文介绍了一种自动化统计rRNA/smRNA比对率的方法,用于评估Ribo-seq或small RNA测序数据的质量。主要内容包括:分析原理(比对率定义、参考序列来源)、实践流程(构建索引、比对统计)以及结果可视化方法。通过Python和R脚本实现自动化处理,可生成汇总表格和柱状图。比对率结果能反映样品污染程度,建议控制在20%以下。该流程有助于快速评估测序质量,为后续分析提供可靠依据。文中还提供了常见问题解决方案和脚本示例,适用于生物信息学标准化质控环节。

2025-06-18 16:24:00 980

原创 2025.06.17【WGS】|多样品VCF文件中每个样品SNP数统计方法详解(含代码与注释)

摘要:本文介绍了一种从合并后的VCF文件中统计每个样品SNP数目的方法。通过解析VCF文件中的GT字段,排除纯合参考(0/0)和缺失(./.)的基因型,准确计算各样本的SNP位点数。文中提供了完整的Python脚本,利用bcftools工具高效处理大规模VCF文件,并支持输出SNP统计结果。该方法适用于群体遗传学和RAD-seq等高通量测序数据分析的质控环节,还可扩展为统计杂合/纯合SNP等进阶需求。脚本使用简单,只需输入VCF文件即可生成样本-SNP数目的统计报表。

2025-06-17 17:37:59 699

原创 2025.06.17【BUG】|多样品VCF文件合并技巧及注意事项(以bcftools为例)

本文介绍了使用bcftools工具合并多个VCF文件的标准流程与实用技巧。主要内容包括:1) 提供两种合并方法(直接合并和文件列表合并);2) 强调合并前的准备工作,如文件格式检查、样本名唯一性验证;3) 分析常见报错(如重复样本名、缺少索引)的解决方案;4) 推荐自动化脚本工具用于格式转换、重复检查和统计;5) 提供合并后的格式转换与统计方法。文章特别提醒合并前需确保VCF文件为bgzip压缩格式并建立索引,使用文件列表可避免误操作,并分享了配套Python脚本提升分析效率。

2025-06-17 17:00:32 873

原创 2025.06.16【Ribo-seq】|sORF翻译能力预测:ORFscore计算与解读

ORFscore是评估开放阅读框(ORF)翻译活性的关键指标,通过分析Ribo-seq数据中核糖体足迹的分布特征来量化翻译活性。本文系统介绍了ORFscore的计算原理和实际应用。ORFscore计算基于三碱基周期性和读段分布特征,公式为标准化读段分布的方差值。分析流程包括数据准备、ORF信息提取、ORFscore计算及结果解读,并提供质量控制方法。ORFscore结果可用于新ORF发现和翻译效率分析,但需注意数据质量控制和多维度验证。典型阈值设定为:ORFscore>0.5表示高可信度翻译ORF,&

2025-06-16 10:52:54 1022

原创 2025.06.16【转录组】|Ribo-seq数据流程详解(二 基因组比对)

本文详细介绍了Ribo-seq数据分析中的比对流程,包括环境准备、STAR索引构建、比对参数设置及结果统计可视化。通过samtools和R脚本实现比对质量评估,提供常见问题解决方案和关键指标解读。该流程强调比对参数优化和质量控制,为后续翻译组学分析奠定基础。

2025-06-16 10:38:09 1093

原创 2025.06.12【3D曲线图】|用Python绘制DNA甲基化3D曲线图(以CpG位点为例)

本文介绍了利用Python matplotlib库绘制3D曲线图可视化DNA甲基化数据的方法。文章以CpG位点甲基化数据为例,展示了从数据准备到3D图形生成的完整流程,包含代码实现和结果解读。通过X轴(CpG位点)、Y轴(组织类型)和Z轴(甲基化百分比)的三维展示,能够直观比较不同组织或疾病状态下的甲基化模式差异。这种可视化方法有助于发现甲基化水平的区域性变化和分组特征,为生物医学研究提供重要线索。最后还提供了图形保存和参数调整的建议,便于读者根据实际需求应用。

2025-06-12 16:04:57 613

原创 2025.06.11【Ribo-seq】|用CPAT预测sORF序列的编码潜能

摘要:本文介绍了使用CPAT工具预测sORF编码潜能的方法。sORF(small Open Reading Frame)在基因组中广泛存在且具有重要功能。文章详细讲解了CPAT安装、物种模型下载、sORF核酸序列准备(需拼接后的ORF序列)等步骤,并提供了Python示例脚本。运行CPAT后需重点关注"Coding_prob"值(人类阈值推荐0.364)。作者强调必须使用拼接后的ORF序列而非基因组区间,并解答了常见问题。最后建议结合多种工具和生物学证据综合判断结果。(148字)

2025-06-11 17:28:57 1107

原创 2025.06.11【Ribo-seq】|根据注释文件获取外显子及ORF序列

摘要:本文介绍从RiboCode生成的GTF文件中提取ORF外显子序列的流程。主要步骤包括:1) 使用Python脚本将GTF文件中exon条目转换为BED格式;2) 通过bedtools工具提取外显子FASTA序列;3) 根据orf_id拼接外显子获得完整ORF序列。关键点涉及GTF(1-based)到BED(0-based)的坐标转换,以及链特异性(-s)和序列命名(-name)参数设置。该流程最终输出包含ORF标识和基因组位置信息的FASTA序列,为后续ORF分析提供基础数据。(149字)

2025-06-11 17:26:46 324

原创 2025.06.09【RNA-seq】|逆转录元件(retrotransposon)表达分析全流程详解

逆转录元件(Retrotransposon)是一类能够通过“复制-粘贴”机制在基因组中移动的转座元件。它们首先将自身DNA转录为RNA,再通过逆转录酶反转录为DNA并插入到基因组新位置。 逆转录元件广泛存在于真核生物基因组中(如人类基因组约40%为转座元件),对基因组进化、基因调控、疾病发生等具有重要意义。

2025-06-09 14:37:13 814

原创 2025.06.09【读书笔记】|PromptBio:让生信分析更简单的AI平台

PromptBio 最大的特色就是“对话式智能体”。什么意思呢?就是你可以像和AI聊天一样,告诉它你的需求,比如“帮我分析一下这组转录组数据”,它就能自动帮你完成数据管理、处理、分析等一系列操作。总的来说,PromptBio 是一个非常适合生信初学者的平台。它用AI和自动化技术,把复杂的生信分析变得简单易用。无论你是刚入门,还是想提升效率,都可以试试这个平台。如果你对生信分析感兴趣,或者正在为数据处理发愁,不妨去PromptBio 官网看看,说不定会有意想不到的收获!

2025-06-09 14:21:40 668

原创 2025.06.07【Ribo-seq】|RiboCode定量命令ORFcount结果输出为0的原因与解决方案

ORFcount输出全为0,99%是因为BAM和GTF参考不一致。RiboCode_onestep用转录本BAM,ORFcount用基因组BAM。保证GTF和BAM参考一致,ORFcount才能输出真实的ORF定量结果。如果您觉得这篇文章对您有所帮助,或者激发了您对生物信息学的兴趣,我诚挚地邀请您:🔔 关注我的账号,不错过每一次知识的分享和探索的旅程。📚 我承诺,将持续为您带来深度与广度兼具的生物信息学内容,让我们一起在知识的海洋中遨游,发现更多未知的奇迹。

2025-06-07 10:27:32 508

原创 2025.06.06【Ribo-seq】|riboWaltz:P-site定位与三碱基周期性分析流程

同学们,大家好!今天我们要学习的是riboWaltz——一款专为Ribo-seq(核糖体足迹测序)数据设计的R包,主要用于P-site定位优化和三碱基周期性分析。P-site的准确定位是Ribo-seq下游所有翻译组学分析的基础,riboWaltz为我们提供了系统、可视化、易用的解决方案。P-site定位优化:自动识别不同长度RPF的最佳P-site偏移量。三碱基周期性分析:可视化RPF在CDS、UTR等区域的分布,评估数据质量。多样本/多条件支持:可同时处理多个样本,便于批量分析和对比。

2025-06-06 16:03:39 912

原创 2025.06.06【Ribo-seq】|RiboCode:基于Ribo-seq数据的全基因组翻译ORF检测工具详解与实战流程

大家好!今天我们要学习的是RiboCode——一个专为Ribo-seq(核糖体足迹测序)数据设计的高质量翻译ORF(开放阅读框)检测工具。RiboCode能够帮助我们在全基因组范围内精准识别翻译事件,发掘经典CDS之外的uORF、dORF、重叠ORF等新型翻译本,极大拓展了我们对转录本翻译潜能的认知。RiboCode 是由清华大学杨学睿课题组开发的开源软件,支持Linux/Mac平台,采用Python实现。自动化流程:一条命令即可完成注释准备、P-site定位、ORF预测。高灵敏度与特异性。

2025-06-06 15:44:34 933

原创 2025.05.30【转录组】|Ribo-seq数据流程详解(一 质量控制)

本文详细介绍了Ribo-seq数据的质控分析流程,重点讲解了使用fastp进行原始数据质控的关键步骤和参数设置。作者通过Snakemake自动化流程示例,展示了如何去除接头序列、过滤低质量reads、生成质控报告等操作。文章强调高质量的Ribo-seq数据对转录后调控和翻译动态研究的重要性,并提供了兼顾数据质量和下游分析需求的参数配置建议。该流程有助于研究人员规范高效地完成Ribo-seq数据质控,为后续分析提供可靠数据基础。

2025-05-30 11:23:56 124

原创 2025.05.29【Network】多组学分析:网络互作图绘制

本文介绍了使用R语言进行网络图绘制的方法与技巧。重点讲解了三个核心R包的使用:igraph用于网络图数据准备与基础绘制,ggraph基于图形语法实现高级可视化,networkD3则为网络图添加交互功能。文章涵盖了从基本概念、包安装、创建网络图对象,到自定义样式布局、添加交互性等完整流程,并提供了度分布、聚类系数等网络分析指标的计算方法。通过清晰的代码示例,帮助读者掌握生物信息学数据可视化的关键技能,为复杂数据的直观展示和分析提供实用工具。

2025-05-29 10:04:37 51

原创 2025.05.29【Ridgeline】多组学分析:多变量数据协同可视化

Ridgeline图(山脊图)是一种高效的多变量数据可视化工具,特别适用于生物信息学领域。本文介绍了如何使用R语言中的ridgelines包创建这种图表,通过堆叠分布曲线直观比较不同样本或条件下的数据分布。文章详细演示了从数据准备到图表生成的完整流程,包括安装包、调整参数等步骤,并以基因表达数据为例进行了案例分析。Ridgeline图能够清晰展示数据的分布特征和差异,是探索多维度数据的重要可视化方法,为生物信息学研究提供了有力支持。

2025-05-29 10:01:45 145

原创 2025.05.28【读书笔记】|如何用SILVA和RFAM数据库高效去除rRNA污染

摘要: 在Ribo-seq等测序数据分析中,清除rRNA污染对结果准确性至关重要。仅使用SILVA数据库可能遗漏5S rRNA污染,建议结合RFAM数据库(特别是RF00001家族)全面清除。操作要点包括:下载两库序列、将RNA碱基U替换为DNA的T、合并序列建立索引,使用bowtie2过滤rRNA reads。注意U/T转换是关键,否则会导致比对失败。该方法能有效提升数据清洁度,为后续分析奠定基础。

2025-05-28 16:25:56 526

原创 2025.05.28【Choropleth】群体进化学专用图:区域数据可视化

本文介绍了使用R语言创建Choropleth地图的技巧,重点讲解leaflet和ggplot2两个包的应用。leaflet用于创建交互式地图,支持缩放和高亮显示;ggplot2则适用于制作静态地图,适合报告和演示。通过具体代码示例展示了数据加载、地图绘制和自定义选项设置。这种可视化方法特别适合展示地理分布数据,如人口密度、疾病发病率和物种分布等,为生物信息学数据分析提供了有力工具。

2025-05-28 14:16:56 1518

原创 2025.05.28【Parallel】Parallel绘图:拟时序分析专用图

摘要:平行坐标图是一种强大的多维数据可视化工具,特别适合展示生物信息学中的复杂基因表达数据。本文介绍了平行坐标图的核心概念和优势,并提供了实现方法:在R中使用ggplot2包创建静态图表,以及通过d3.js构建交互式可视化。教程包含详细的代码示例,帮助0基础用户快速掌握这一技术,提升数据分析能力。文章最后鼓励读者点赞关注,以获取更多生物信息学相关知识。

2025-05-28 14:14:37 713

原创 2025.05.12【Waffle】精美Waffle图绘制指南

本文介绍了使用R语言waffle包绘制Waffle图的方法。Waffle图通过网格中的彩色方块直观展示分类数据占比,适用于生物信息学等领域的数据可视化。文章从基础安装开始,逐步讲解简单Waffle图的绘制、颜色和布局自定义、标题注释添加等高级功能,并展示如何结合ggplot2增强图表效果。通过氨基酸分布等示例代码,帮助读者掌握这一实用可视化工具,为科研数据展示提供了新选择。

2025-05-27 09:50:45 142

原创 2025.05.27【堆叠分组条形图】分组与堆叠条形图的绘制技巧

本文介绍了使用R语言绘制堆叠与分组条形图的技巧。主要内容包括:1)堆叠条形图的特点及适用场景,特别适合展示生物信息学中的分类数据;2)通过ggplot2包的详细实现步骤,包括数据准备、基础绘图、透明度调整、图例定制和数据排序;3)演示了数据分组显示及堆叠与分组结合的绘制方法。文中配有示例代码和效果图,帮助读者掌握多种条形图变体的绘制技巧,以适应不同数据可视化需求。文章最后鼓励读者点赞关注,以便获取更多生物信息学数据分析相关内容。

2025-05-27 09:49:59 339

admixture_linux-1.3.0.zip

admixture早期版本,目前官网已经停止维护,需要进行全基因组关联分析的小伙伴们可以取用。该软件主要用于分析群体结构

2020-10-27

固态硬盘选购一览表.xlsx

定义:俗称固态硬盘,固态硬盘是用固态电子存储芯片阵列而制成的硬盘,因为台湾英语里把固体电容称之为Solid而得名。分类:SSD由控制单元和存储单元(FLASH芯片、DRAM芯片)组成。内含三星、金士顿、西部数据3个品牌常用固态硬盘信息整理

2020-08-28

7.17丨服务器性价比调研表.xlsx

这是一个对虚拟云主流市场调研的一份结果汇总,代表了2020.7时期的各大厂商性能价格比较。包括阿里云、腾讯云、华为云、亚马逊四家虚拟云服务以及和物理服务器在性能,价格方面的比较。

2020-08-05

基因ID转name工作台.xlsx

基因ID转name工作台.xlsx,可以将基因I转化为基因name,使用EXCEL处理,上手快速,很适合收藏一份

2020-02-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除