2020.08.14【RNA-Seq流程】丨将HTseq生成的基因COUNT值转换为FPKM值

2021.04.22更新:2.0版本

count转换FPKM介绍

公式介绍

FPKM公式
下方公式是FPKM的综述文章写的,参数并不好理解,但是对数量级表示很明白
FPKM公式

https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/

要求出FPKM值,需要获得三个参数。
cDNA Fragments:可以理解为单个基因比对到基因组上的reads数,在测序数据里就是count值。HTseq处理后可以直接得到结果。
Mapped Fragments:指每个样品中所有基因比对到基因组上的reads数。也就是用求和函数sum()将单一样品的count全部加起来。注意ÿ

03-11
<think>好的,我现在需要帮用户了解RNA-seq的生物信息学分析流程和相关工具。首先,用户的问题集中在分析方法和工具上,可能他们刚接触这个领域,需要从基础开始梳理流程。我得确保回答结构清晰,步骤明确,并且提到的工具是常用的,最好还能提供代码示例。 先回想一下RNA-seq的标准流程。通常包括数据质控、序列比对、定量、差异表达分析、功能注释等步骤。每个步骤都有对应的工具,比如FastQC用于质控,STAR或HISAT2用于比对,featureCountsHTSeq-count进行定量,DESeq2或edgeR做差异分析,最后用GO或KEGG做富集分析。 用户可能还需要了解流程中的每个环节的具体操作,所以每个步骤需要简要说明目的和工具选择的原因。例如,在质控阶段,Trimmomatic或Cutadapt用来去除低质量序列和接头,这对后续分析的准确性很重要。 另外,用户提到参考的引用中有使用Python和R的代码,所以我应该适当加入一些代码示例,比如用R展示DESeq2的使用方法,或者用Python调用FastQC的示例。但要注意代码的准确性和适用性,避免误导。 还需要考虑用户可能不知道的细节,比如不同比对工具的选择依据,比如STAR适合处理长读长,而HISAT2在内存使用上更高效。或者差异表达分析工具的不同统计方法,这些可能需要简要说明,帮助用户理解选择不同工具的原因。 最后,生成相关问题时,要覆盖流程中的关键步骤、工具比较、常见问题解决方法以及最新技术发展,这样用户可以有进一步探索的方向。比如,如何评估数据质量,或者单细胞RNA-seq与传统流程的差异。 需要检查是否符合之前的系统级指令,比如数学公式的格式是否正确,独立公式是否用$$,但RNA-seq流程可能涉及较少数学,不过如果有统计模型,比如DESeq2的负二项分布模型,可能需要用LaTeX表达。例如,差异表达的统计模型可以写成公式,并用$$包裹。 另外,确保引用标记正确,用户提供的引用[1]和[2]都是关于RNA-seq流程的,所以在适当的地方添加[^1]和[^2],比如在介绍整体流程时引用。 现在组织内容,分步骤详细说明,每个步骤包含工具、目的、代码示例(如果有的话),并注意格式要求,比如代码块用```python或```r,数学公式用$或$$。同时,最后生成的相关问题要覆盖用户可能感兴趣的扩展方向。 可能还需要确认工具的最新版本和是否有更流行的替代工具,比如是否还推荐使用TopHat,或者现在更多使用HISAT2。确保信息不过时,比如STAR仍然是主流的比对工具之一。 总结下来,回答的结构应该是: 1. 数据质控:工具和代码示例 2. 序列比对:工具比较和代码 3. 定量分析:工具说明和R代码 4. 差异表达分析:统计方法和R示例 5. 功能注释:工具和数据库 6. 可视化:工具如ggplot2或ComplexHeatmap 然后相关问题可以围绕这些步骤中的挑战、工具选择、优化方法等展开。</think>### RNA-seq生物信息学分析流程与工具 RNA-seq分析流程通常包含以下核心步骤,结合常用工具和代码示例进行说明: --- #### **1. 数据质控(Quality Control)** **目的**:检查原始测序数据的质量,过滤低质量序列和接头污染。 - **工具**: - **FastQC**(质量评估):生成质控报告,检查序列质量分布、GC含量等。 - **Trimmomatic**或**Cutadapt**(数据过滤):去除低质量碱基和接头序列。 ```bash # 使用Trimmomatic过滤数据(Java命令) java -jar trimmomatic.jar PE -phred33 input_R1.fq.gz input_R2.fq.gz \ output_R1_paired.fq.gz output_R1_unpaired.fq.gz \ output_R2_paired.fq.gz output_R2_unpaired.fq.gz \ ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 ``` --- #### **2. 序列比对(Read Alignment)** **目的**:将测序reads比对到参考基因组或录组。 - **工具**: - **STAR**(快速比对):适合长读长和高通量数据。 - **HISAT2**(高效比对):内存占用低,支持剪接比对。 ```bash # 使用STAR比对示例 STAR --genomeDir /path/to/genome_index \ --readFilesIn output_R1_paired.fq.gz output_R2_paired.fq.gz \ --outFileNamePrefix aligned_ \ --runThreadN 8 --outSAMtype BAM SortedByCoordinate ``` --- #### **3. 表达定量(Expression Quantification)** **目的**:计算基因录本的表达量(如FPKM或TPM)。 - **工具**: - **featureCounts**(基因水平定量):快速统计比对到基因的reads数。 - **Salmon**或**Kallisto**(录本定量):基于比对或无比对(pseudoalignment)方法。 ```r # R中使用DESeq2进行标准化和差异分析(需输入featureCounts结果) library(DESeq2) countData <- as.matrix(read.csv("counts_matrix.csv", row.names=1)) dds <- DESeqDataSetFromMatrix(countData, colData=metadata, design=~condition) dds <- DESeq(dds) res <- results(dds) ``` --- #### **4. 差异表达分析(Differential Expression Analysis)** **目的**:识别不同实验条件下显著差异表达的基因- **工具**: - **DESeq2**(基于负二项分布模型):适用于复杂实验设计。 - **edgeR**或**limma-voom**(灵活处理小样本或复杂方差)。 差异表达模型示例: $$ \log_2(\mu_{ij}) = \beta_{i0} + \beta_{i1} x_j + \epsilon_{ij} $$ 其中$\mu_{ij}$为基因$i$在样本$j$的期望表达量,$x_j$为实验条件变量。 --- #### **5. 功能富集分析(Functional Enrichment)** **目的**:挖掘差异基因的生物学功能(如GO、KEGG通路)。 - **工具**: - **clusterProfiler**(R包):支持GO、KEGG富集分析。 - **DAVID**(在线工具):整合多种注释数据库。 --- #### **6. 可视化(Visualization)** **目的**:展示分析结果(如热图、火山图)。 - **工具**: - **ggplot2**(R绘图):生成火山图、PCA图。 - **ComplexHeatmap**(R包):绘制基因表达热图。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值