2021.3.17丨致病菌毒力因子(VFDB)数据库注释

本文介绍了如何利用DIAMOND工具和VFDB数据库进行细菌毒力因子的注释过程。首先概述了DIAMOND的功能特点及其在高性能序列比对中的应用,随后详细阐述了VFDB数据库的内容和作用,并提供了具体的数据库构建和注释步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 摘要
    • 接到一个常规细菌的组装注释项目,不过客户提出想要获取关于组装结果与病毒之间的联系/按之前的操作,dfast没有病毒相关的数据库,无法满足客户需求。一番查阅,发现大家用这个VFDB数据库进行常规的病毒注释,下面将介绍一下使用该数据库进行注释的过程。由于比对工具diamond之前没有介绍过,此次也将一并介绍。
  • 介绍
    • DIAMOND简介
      • DIAMOND是用于蛋白质和翻译DNA的搜索序列比对工具,旨在用于大序列数据的高性能分析。
      • 主要功能包括:
        • BLAST以100x-10,000x的速度对蛋白质和翻译的DNA进行成对比对。
        • 移码比对,用于较长读段分析。
        • 资源需求低,可以在标准台式机或笔记本电脑上运行。
        • 各种输出格式,包括BLAST成对,表格和XML,还可以进行标准分类。
    • VFDB数据库简介
      • 毒力因子(Virulence factor,VFs)指由细菌,病毒,真菌等代谢产生的带有侵袭力和毒素等毒力性质的分子,主要用于微生物感染宿主时,通过抑制或逃避宿主的免疫反应等出入宿主组织细胞,并从宿主获得营养及自身增殖生长的目的。毒力因子可编码在可移动遗传元件(比如质粒、基因岛、噬菌体等)上并进行水平基因转移(传播),使无害细菌变成危险的病原菌,所以在鉴定毒力因子时一般会考虑基因岛、分泌蛋白等。
      • 病原菌毒力因子数据库 VFDB 由中国医学科学院研发,收集整理了24个属100多种重要医学病原菌已知毒力因子的组成、结构、功能、致病机理、毒力岛、序列和基因组信息等内容,被广泛应用于毒力因子基因鉴定。
  • 材料与方法
    • 环境配置
      • Version:Linux version 3.10.0-1160.15.2.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC) ) #1 SMP Wed Feb 3 15:06:38 UTC 2021
        cat /proc/version
      • CPU(s): 64
        lscpu
        • 型号名称: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
      • Mem: 256G
        free -g
        • Swap: 15G
          交换内存,一般设置为0-10
    • 构建数据库
      • gunzip VFDB_setA_pro.fas.gz #解压缩
      • diamond makedb --in /home/yangxin/db/vfdb/VFDB_setA_pro.fas --db /home/yangxin/db/vfdb/VFDB_setA #构建数据库
      • diamond blastp -db VFDB_setA_pro.fas.dmnd --query protein.fa --out vf_anno.txt #进行数据库比对注释
  • 结果展示
    • 本地注释结果
      • 结果说明
    • 在线注释
      • 注释结果
        • 该表格为网络视图复制粘贴后进行了分列处理得到的结果,对于客户而言更加直观。于是将该表格作为注释交付结果。
  • 总结
    • 尽管在线工具方便,但毕竟需要手动处理。还是建议探索本地分析,能够更好构建分析流程。
  •  
<think>好的,用户的问题是想确定VFDB注释到的多个毒力相关基因在哪些功能上有较高覆盖度,需要分析这些基因的功能覆盖度。首先,我需要回忆一下VFDB的基本信息,VFDB毒力因子数据库,主要用于注释细菌中的毒力基因。用户可能是在进行细菌基因组分析,比如通过测序数据注释到多个毒力基因,现在需要进一步了解这些基因的功能分布情况。 接下来,用户的具体需求是分析这些基因在功能上的覆盖度,也就是哪些功能类别(比如黏附、侵袭、毒素等)的基因出现得比较多。可能需要将注释到的基因归类到不同的功能类别,然后统计每个类别的基因数量或比例,找出覆盖度高的功能。 根据引用内容,特别是引用[2]和引用[3],用户可能已经使用DIAMOND比对到VFDB数据库,并且得到了一些注释结果。比如在引用[3]中,他们分析了115个毒力相关基因的状态,并统计了不同临床组中的分布情况,还进行了统计学差异分析。这可能涉及到如何将基因分类到不同功能,并计算覆盖度。 我需要考虑用户可能的步骤:首先需要获取VFDB数据库的功能分类信息,可能每个毒力基因属于特定的功能类别。然后,将注释到的基因与这些分类对应,统计每个类别的数量,或者计算相对于整个数据库的覆盖比例。可能还需要可视化,如柱状图或饼图来展示结果。此外,可能需要用统计方法来确定哪些功能类别显著富集。 另外,用户可能需要知道使用哪些工具或方法来实现这些步骤。例如,是否可以使用VFDB提供的元数据,或者需要自行整理功能分类表。引用[2]提到使用DIAMOND进行比对,并设置了查询覆盖率和相似度的阈值,这可能影响最终注释到的基因列表,进而影响功能覆盖度的分析。因此,用户需要注意参数设置对结果的影响。 此外,引用[3]中进行了统计学差异分析,比较不同临床组中基因的检出率,这可能也是用户需要的分析部分。因此,除了基础的功能分类统计,用户可能还需要比较不同样本或组别之间的功能覆盖度差异,以发现特定的功能模式。 需要考虑用户是否有多个样本或实验组的数据,是否需要做比较分析。如果用户的数据包含不同的条件或分组,分析功能覆盖度的差异可能会更有意义。例如,某些毒力功能在致病性更强的菌株中覆盖度更高。 最后,用户可能需要了解如何呈现结果,比如表格、图表,以及如何解释这些结果。可能需要建议使用R、Python的数据分析库(如pandas、matplotlib)或生物信息学工具(如ggplot2)进行可视化和统计分析。</think>要分析VFDB注释到的多个毒力相关基因的功能覆盖度,可通过以下步骤实现: --- ### 1. **功能分类体系整理** - **获取VFDB功能分类信息** VFDB毒力基因按功能分为黏附、侵袭、毒素、免疫逃逸等类别[^3]。需从VFDB官网下载毒力基因的功能分类元数据表,包含基因ID与其对应的功能类别和子类。 - **示例分类结构**: ``` 基因ID | 功能大类 | 功能子类 VFG001 | 黏附 | 菌毛相关 VFG002 | 毒素 | 溶血素 ``` --- ### 2. **注释基因与功能映射** - **匹配注释结果与分类表** 将DIAMOND比对获得的毒力基因ID(如引用[2]中相似度>50%且覆盖度>50%的基因)与VFDB功能分类表关联,形成如下表格: ``` 样本/组别 | 基因ID | 功能大类 | 功能子类 GC组 | VFG001 | 黏附 | 菌毛相关 GU组 | VFG002 | 毒素 | 溶血素 ``` --- ### 3. **功能覆盖度统计** - **大类覆盖度计算** 统计每个功能大类的基因数量及占比: ```python # Python示例:统计功能大类频次 import pandas as pd df = pd.read_csv("annotated_genes.csv") coverage = df["功能大类"].value_counts(normalize=True) * 100 ``` - **输出示例**: ``` 黏附 35% 毒素 28% 免疫逃逸 20% ... ``` --- ### 4. **可视化分析** - **使用柱状图或饼图展示功能分布** 通过工具如Matplotlib或R ggplot2绘制功能覆盖度占比,直观显示优势功能类别。 ![功能覆盖度示例图](https://via.placeholder.com/400x200?text=黏附+35%25+毒素+28%25+免疫逃逸+20%25) --- ### 5. **组间差异分析(可选)** - **比较不同样本组的功能覆盖度** 如引用[3]中对比GC组、GU组等,使用卡方检验或Fisher精确检验判断某功能类别是否在特定组别中显著富集: ```r # R示例:卡方检验 chisq.test(matrix(c(组A_黏附基因数, 组A总基因数, 组B_黏附基因数, 组B总基因数), nrow=2)) ``` --- ### 6. **关键结果解读** - **高覆盖度功能的意义** 例如,若“黏附”类基因覆盖度最高,表明目标菌株可能更依赖宿主细胞黏附机制致病[^3]。 - **与表型关联** 结合临床数据(如致病性强弱),分析高覆盖度功能是否与特定表型相关。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值