Scanning Radar Forward-Looking Imaging Under High-Speed Platform by Accurate Profile-Phase Deconvolution Method
1. 研究目标与产业意义
1.1 研究目标
论文旨在解决高速平台(High-Speed Platform)下前视扫描雷达(Forward-Looking Scanning Radar)的角分辨率(Angular Resolution)不足问题。传统卷积模型(如AC、APC)未考虑高速运动引起的波束驻留时间(Beam Dwell Time)变化和天线方向图拉伸/压缩(Antenna Pattern Stretching/Compression),导致模型误差。论文提出Profile-Phase Convolution (PPC)模型和自适应正则化(Adaptive Regularization, AR)去卷积方法,以提升高速平台下的成像精度。
1.2 实际问题与产业意义
- 实际问题:高速平台(如超音速无人机、战斗机)的雷达前视成像因运动速度过快导致传统模型失效,无法准确检测障碍物或地形。
- 产业意义:提升高速平台前视成像能力可增强飞行器在复杂环境下的导航与避障能力,推动军事侦察、无人机自主飞行等应用。
2. 创新方法:PPC模型与AR去卷积
2.1 Profile-Phase Convolution (PPC)模型
2.1.1 传统模型的局限性
-
AC模型(Amplitude Convolution Model):仅考虑天线方向图的幅度卷积,忽略多普勒相位(Doppler Phase)影响,适用于低速平台。
-
APC模型(Amplitude-Phase Convolution Model):引入多普勒相位矩阵 P P P,但未考虑波束驻留时间变化,公式为:
s = ( H ⊙ P ) x + n s = (H \odot P)x + n s=(H⊙P)x+n
其中 H H H为天线方向图卷积矩阵, P P P为多普勒相位矩阵, ⊙ \odot ⊙为逐元素乘积。
2.1.2 PPC模型的创新
PPC模型通过动态波束驻留时间建模和天线方向图拉伸/压缩补偿,修正了传统模型的误差。
Profile(轮廓/幅度剖面):
-
指天线方向图的动态变化,尤其是高速平台运动引起的波束驻留时间(Beam Dwell Time)变化和天线方向图拉伸/压缩。
-
- 波束驻留时间动态建模
高速平台下,目标 P i P_i Pi的波束驻留时间 Δ T s \Delta T_s ΔTs受平台速度 V V V、扫描角 θ i \theta_i θi和斜距 R R R影响:
Δ T s = θ b ω 1 + V 2 R 2 ω 2 + 2 V sin θ i R ω \Delta T_s = \dfrac{\theta_b}{\omega \sqrt{1 + \dfrac{V^2}{R^2 \omega^2} + \dfrac{2V \sin\theta_i}{R \omega}}} ΔTs=ω1+R2ω2V2+Rω2Vsinθiθb
其中 θ b \theta_b θb为天线波束宽度, ω \omega ω为扫描角速度。 通过此公式量化不同方位角目标的波束驻留时间,修正天线方向图的采样数( L ( θ i ) L(\theta_i) L(θi)),从而动态调整卷积核。
- 波束驻留时间动态建模
-
- 天线方向图拉伸/压缩补偿
不同方位角 θ i \theta_i θi对应的天线方向图采样数 L ( θ i ) L(\theta_i) L(
- 天线方向图拉伸/压缩补偿