Graph-Based Blind Image Deblurring From a Single Photograph
1. 研究目标与产业意义
1.1 研究目标
论文旨在解决盲图像去模糊(Blind Image Deblurring)问题,即仅从单张模糊图像中同时恢复潜在清晰图像和未知模糊核(Blur Kernel)。传统方法依赖已知模糊核(非盲去模糊),而盲去模糊由于解空间的高度病态性(Ill-Posedness),需通过先验约束缩小解空间。
1.2 实际问题与产业意义
- 实际应用场景:因相机抖动、物体运动或失焦导致的图像模糊在智能手机摄影、安防监控、医学成像等领域普遍存在。
- 产业价值:提升图像质量可减少对硬件防抖技术的依赖,降低设备成本;在自动驾驶中,清晰图像对目标检测至关重要。
2. 创新方法:重新加权图总变分(RGTV)与图谱建模
2.1 核心思路与框架
论文提出了一种基于图信号处理的盲图像去模糊方法,其核心创新在于 重新加权图总变分 (Reweighted Graph Total Variation, RGTV)先验。该方法通过动态调整图边权,促进图像块的双模边权分布,从而恢复骨架图像并估计模糊核。
2.2 重新加权图总变分(RGTV)的数学定义与特性
2.2.1 RGTV的公式定义
RGTV的数学表达式为:
∥ x ∥ R G T V = ∑ i = 1 N ∑ j = 1 N w i , j ( x i , x j ) ∣ x j − x i ∣ , (7) \|x\|_{RGTV} = \sum_{i=1}^N \sum_{j=1}^N w_{i,j}(x_i, x_j) |x_j - x_i|, \tag{7} ∥x∥RGTV=i=1∑Nj=1∑Nwi,j(xi,xj)∣xj−xi∣,(7)
其中,动态边权函数 w i , j ( x i , x j ) = exp ( − ∣ x i − x j ∣ 2 σ 2 ) w_{i,j}(x_i, x_j) = \exp\left(-\dfrac{|x_i - x_j|^2}{\sigma^2}\right) wi,j(xi,xj)=exp(−σ2∣xi−xj∣2) 是像素强度差的指数函数。与传统GTV(公式6)的固定边权不同,RGTV的边权随像素差异动态变化:
∥ x ∥ G T V = ∑ i = 1 N ∑ j = 1 N w i , j ∣ x j − x i ∣ , (6) \|x\|_{GTV} = \sum_{i=1}^N \sum_{j=1}^N w_{i,j} |x_j - x_i|, \tag{6} ∥x∥GTV=i=1∑Nj=1∑Nwi,j∣