Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring
1. 论文的研究目标与实际意义
1.1 研究目标
论文旨在解决动态场景去模糊(Dynamic Scene Deblurring)问题,即从因相机抖动、物体运动等因素导致的模糊图像中恢复清晰图像。核心挑战在于:
“This inverse problem is severely ill-posed and requires extra information on latent image y to constrain the solution space.”
传统方法依赖人工设计先验(如稀疏梯度),但泛化能力有限;深度学习虽能端到端训练,但忽略领域知识(如物理先验),且多尺度信息利用不充分。
1.2 实际意义
- 产业应用:提升自动驾驶(清晰识别路标)、安防监控(运动目标细节还原)、手机摄影(防抖算法)等场景的图像质量。
- 技术瓶颈:动态模糊通常是非均匀的(spatially variant),传统优化方法计算耗时长,而纯数据驱动的CNN在训练数据不足时性能受限。
2. 创新方法:DBCPeNet的核心设计
2.1 整体架构
DBCPeNet的核心创新在于双先验嵌入层(DBCPeL)和双向多尺度策略(IFSE):
- DBCPeL:将物理先验(暗/亮通道)嵌入CNN中间层,约束特征学习。
- IFSE:打破传统单向信息流,同时采用由粗到细(Coarse-to-Fine)和由细到粗(Fine-to-Coarse)路径,实现跨尺度信息融合。
整体架构如图3所示,包含三尺度编解码器,每尺度含4个卷积层、1个DBCPeL和特征精化模块(16个RIRBlock)。
2.2 DBCPeL:先验知识与特征融合
2.2.1 暗亮通道先验定义
- 暗通道(Dark Channel Prior, DCP):局部区域内RGB通道最小值,反映无雾图像的暗像素稀疏性:
D ( I ) ( x ) = min y ∈ Ω ( x ) ( min c ∈ { r , g , b } I c ( y ) ) ( 2 ) \begin{align*} D(I)(x) &= \min_{y \in \Omega(x)} \left( \min_{c \in \{r,g,b\}} I^c(y) \right) \end{align*} \quad (2) D(I)(x)=y∈Ω(x)min(c∈{ r,g,b}minIc(y))(2) - 亮通道(Bright Channel Prior, BCP):局部区域内RGB通道最大值,适用于高光区域:
B ( I ) ( x ) = max y ∈ Ω ( x ) ( max c ∈ { r , g , b } I c ( y ) ) ( 2 ) \begin{align*} B(I)(x) &= \max_{y \in \Omega(x)} \left( \max_{c \in \{r,g,b\}} I^c(y) \right) \end{align*} \quad (2) B(I)(x)=y∈Ω(x)max(c∈{ r,g,b}maxIc(y))(2)
关键观察:模糊图像的暗通道更亮、亮通道更暗(图2),清晰图像的通道值更稀疏。
2.2.2 DBCPeL的数学形式
DBCPeL将输入特征图 f l − 1 f^{l-1} fl−1 映射为三个分支:
- 主路径特征: f l = M θ ( f l − 1 ) f^l = \mathcal{M}_\theta(f^{l-1}) fl=Mθ(fl−1)
- 暗通道约束特征: Λ = M [ α ∣ D ] ( f l − 1 ) \Lambda = \mathcal{M}_{[\alpha|D]}(f^{l-1}) Λ=M[α∣D](f