Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring论文阅读

1. 论文的研究目标与实际意义

1.1 研究目标

论文旨在解决动态场景去模糊(Dynamic Scene Deblurring)问题,即从因相机抖动、物体运动等因素导致的模糊图像中恢复清晰图像。核心挑战在于:

“This inverse problem is severely ill-posed and requires extra information on latent image y to constrain the solution space.”
传统方法依赖人工设计先验(如稀疏梯度),但泛化能力有限;深度学习虽能端到端训练,但忽略领域知识(如物理先验),且多尺度信息利用不充分。

1.2 实际意义
  • 产业应用:提升自动驾驶(清晰识别路标)、安防监控(运动目标细节还原)、手机摄影(防抖算法)等场景的图像质量。
  • 技术瓶颈:动态模糊通常是非均匀的(spatially variant),传统优化方法计算耗时长,而纯数据驱动的CNN在训练数据不足时性能受限。

2. 创新方法:DBCPeNet的核心设计

2.1 整体架构

DBCPeNet的核心创新在于双先验嵌入层(DBCPeL)和双向多尺度策略(IFSE)

  • DBCPeL:将物理先验(暗/亮通道)嵌入CNN中间层,约束特征学习。
  • IFSE:打破传统单向信息流,同时采用由粗到细(Coarse-to-Fine)和由细到粗(Fine-to-Coarse)路径,实现跨尺度信息融合。
    整体架构如图3所示,包含三尺度编解码器,每尺度含4个卷积层、1个DBCPeL和特征精化模块(16个RIRBlock)。

2.2 DBCPeL:先验知识与特征融合
2.2.1 暗亮通道先验定义
  • 暗通道(Dark Channel Prior, DCP):局部区域内RGB通道最小值,反映无雾图像的暗像素稀疏性:
    D ( I ) ( x ) = min ⁡ y ∈ Ω ( x ) ( min ⁡ c ∈ { r , g , b } I c ( y ) ) ( 2 ) \begin{align*} D(I)(x) &= \min_{y \in \Omega(x)} \left( \min_{c \in \{r,g,b\}} I^c(y) \right) \end{align*} \quad (2) D(I)(x)=yΩ(x)min(c{ r,g,b}minIc(y))(2)
  • 亮通道(Bright Channel Prior, BCP):局部区域内RGB通道最大值,适用于高光区域:
    B ( I ) ( x ) = max ⁡ y ∈ Ω ( x ) ( max ⁡ c ∈ { r , g , b } I c ( y ) ) ( 2 ) \begin{align*} B(I)(x) &= \max_{y \in \Omega(x)} \left( \max_{c \in \{r,g,b\}} I^c(y) \right) \end{align*} \quad (2) B(I)(x)=yΩ(x)max(c{ r,g,b}maxIc(y))(2)

关键观察:模糊图像的暗通道更亮、亮通道更暗(图2),清晰图像的通道值更稀疏。

2.2.2 DBCPeL的数学形式

DBCPeL将输入特征图 f l − 1 f^{l-1} fl1 映射为三个分支:

  1. 主路径特征: f l = M θ ( f l − 1 ) f^l = \mathcal{M}_\theta(f^{l-1}) fl=Mθ(fl1)
  2. 暗通道约束特征: Λ = M [ α ∣ D ] ( f l − 1 ) \Lambda = \mathcal{M}_{[\alpha|D]}(f^{l-1}) Λ=M[αD](f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值