Deep Generalized Unfolding Networks for Image Restoration论文阅读

1. 论文研究目标与实际意义

目标:解决图像恢复(Image Restoration, IR)任务中传统深度学习方法可解释性差依赖预定义退化过程的问题,提出一种兼具模型驱动可解释性与数据驱动自适应性的框架。
实际问题

  • 现有深度学习方法(如CNN)缺乏透明性,难以分析组件作用;
  • 基于优化的方法(如DUN)需已知退化矩阵 A A A(如模糊核、噪声分布),无法处理真实场景中复杂未知的退化(如空间变化的雨线、动态模糊)。
    产业意义
  • 提升医疗成像(如MRI重建)、无人驾驶(雨雾去除)、手机摄影(夜景去噪)等场景的恢复质量;
  • 模型可解释性有助于算法可靠性认证(如医疗诊断),推动AI在安全敏感领域的落地。

2. 创新方法:Deep Generalized Unfolding Network (DGUNet)

2.1 核心思路

论文将近端梯度下降算法(PGD, Proximal Gradient Descent) 展开为深度网络,通过三个核心创新解决传统DUN的局限性:

  1. 灵活梯度下降模块(FGDM, Flexible Gradient Descent Module):自适应学习未知退化过程;
  2. 信息近端映射模块(IPMM, Informative Proximal Mapping Module):沙漏结构实现多尺度特征提取;
  3. 跨阶段信息融合(ISFF, Inter-Stage Feature Fusion):空间自适应归一化缓解特征→图像转换的信息损失。
2.2 灵活梯度下降模块(FGDM)
2.2.1 传统PGD的局限性

传统PGD迭代公式(论文式5a, 5b):
v k = x ^ k − 1 − ρ A ⊤ ( A x ^ k − 1 − y ) (5a) v^k = \hat{x}^{k-1} - \rho A^\top (A \hat{x}^{k-1} - y) \tag{5a} vk=x^k1ρA(Ax^k1y)(5a)
x ^ k = prox ⁡ λ , J ( v k ) (5b) \hat{x}^k = \operatorname{prox}_{\lambda,J}(v^k) \tag{5b} x^k=proxλ,J(vk)(5b)
问题:需预知退化矩阵 A A A(如模糊核、噪声分布),无法处理真实场景中未知退化(如空间变化的雨线、动态模糊)。

2.2.2 FGDM的创新设计
  • 已知 A A A(公式6):
    v k = x ^ k − 1 − ρ k A ⊤ ( A x ^ k − 1 − y ) (6) v^k = \hat{x}^{k-1} - \rho^k A^\top (A \hat{x}^{k-1} - y) \tag{6} vk=x^k1ρkA(Ax^k1y)(6)
    引入可学习步长 ρ k \rho^k ρk 提升鲁棒性。

  • 未知 A A A(公式7):
    v k = x ^ k − 1 − ρ k F A ⊤ k ( F A k ( x ^ k − 1 ) − y ) (7) v^k = \hat{x}^{k-1} - \rho^k \mathcal{F}_{A^\top}^k \left( \mathcal{F}_A^k (\hat{x}^{k-1}) - y \right) \tag{7} vk=x^k1ρkFAk(FAk(x^k1)y)(7)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值