Deep Generalized Unfolding Networks for Image Restoration
1. 论文研究目标与实际意义
目标:解决图像恢复(Image Restoration, IR)任务中传统深度学习方法可解释性差与依赖预定义退化过程的问题,提出一种兼具模型驱动可解释性与数据驱动自适应性的框架。
实际问题:
- 现有深度学习方法(如CNN)缺乏透明性,难以分析组件作用;
- 基于优化的方法(如DUN)需已知退化矩阵 A A A(如模糊核、噪声分布),无法处理真实场景中复杂未知的退化(如空间变化的雨线、动态模糊)。
产业意义: - 提升医疗成像(如MRI重建)、无人驾驶(雨雾去除)、手机摄影(夜景去噪)等场景的恢复质量;
- 模型可解释性有助于算法可靠性认证(如医疗诊断),推动AI在安全敏感领域的落地。
2. 创新方法:Deep Generalized Unfolding Network (DGUNet)
2.1 核心思路
论文将近端梯度下降算法(PGD, Proximal Gradient Descent) 展开为深度网络,通过三个核心创新解决传统DUN的局限性:
- 灵活梯度下降模块(FGDM, Flexible Gradient Descent Module):自适应学习未知退化过程;
- 信息近端映射模块(IPMM, Informative Proximal Mapping Module):沙漏结构实现多尺度特征提取;
- 跨阶段信息融合(ISFF, Inter-Stage Feature Fusion):空间自适应归一化缓解特征→图像转换的信息损失。
2.2 灵活梯度下降模块(FGDM)
2.2.1 传统PGD的局限性
传统PGD迭代公式(论文式5a, 5b):
v k = x ^ k − 1 − ρ A ⊤ ( A x ^ k − 1 − y ) (5a) v^k = \hat{x}^{k-1} - \rho A^\top (A \hat{x}^{k-1} - y) \tag{5a} vk=x^k−1−ρA⊤(Ax^k−1−y)(5a)
x ^ k = prox λ , J ( v k ) (5b) \hat{x}^k = \operatorname{prox}_{\lambda,J}(v^k) \tag{5b} x^k=proxλ,J(vk)(5b)
问题:需预知退化矩阵 A A A(如模糊核、噪声分布),无法处理真实场景中未知退化(如空间变化的雨线、动态模糊)。
2.2.2 FGDM的创新设计
-
已知 A A A 时(公式6):
v k = x ^ k − 1 − ρ k A ⊤ ( A x ^ k − 1 − y ) (6) v^k = \hat{x}^{k-1} - \rho^k A^\top (A \hat{x}^{k-1} - y) \tag{6} vk=x^k−1−ρkA⊤(Ax^k−1−y)(6)
引入可学习步长 ρ k \rho^k ρk 提升鲁棒性。 -
未知 A A A 时(公式7):
v k = x ^ k − 1 − ρ k F A ⊤ k ( F A k ( x ^ k − 1 ) − y ) (7) v^k = \hat{x}^{k-1} - \rho^k \mathcal{F}_{A^\top}^k \left( \mathcal{F}_A^k (\hat{x}^{k-1}) - y \right) \tag{7} vk=x^k−1−ρkFA⊤k(FAk(x^k−1)−y)(7)<