yolov8如何设置显卡并批量推理_调用API推理示例

官方示例:模型预测与Ultralytics YOLO
你可以在官网找到这样一个推理示例,但是这里没有设置显卡。
在这里插入图片描述
这里提供一个用于可以设置显卡进行批量推理的示例

import os
import cv2
from ultralytics import YOLO
from ultralytics.utils.torch_utils import select_device

# 初始化
weights = "./train/weights/best.pt"
yolo_model = YOLO(weights).to(select_device(device="3"))

test_path = "./testimgs"
res_path = "./resimgs"
os.makedirs(res_path, exist_ok=True)

for imgname in os.listdir(test_path):
    img = cv2.imread(os.path.join(test_path, imgname))
    results = yolo_model(img)  # Track only person class
    # Process results list
    for result in results:
        boxes = result.boxes  # Boxes object for bounding box outputs
        masks = result.masks  # Masks object for segmentation masks outputs
        keypoints = result.keypoints  # Keypoints object for pose outputs
        probs = result.probs  # Probs object for classification outputs
        obb = result.obb  # Oriented boxes object for OBB outputs
        result.save(filename=os.path.join(res_path, imgname.replace(".jpg","_res.jpg")))  # save to disk
### 使用GPU加速YOLOv8模型推理 为了实现基于GPU的YOLOv8模型推理,需先安装必要的依赖项配置环境。对于Raspberry Pi和Jetson Nano这类设备来说,可以通过更换软件源来加快扩展库的下载速度[^2]。 #### 安装CUDA和cuDNN 确保已正确安装适用于所用硬件版本的CUDA Toolkit以及配套的cuDNN库。这一步骤至关重要,因为YOLOv8借助这些工具可以更高效地利用图形处理单元(GPU)资源完成计算密集型任务。 #### 设置Python开发环境 创建一个新的虚拟环境,激活该环境用于后续操作。接着通过pip命令安装PyTorch及其对应的CUDA版本,这是为了让深度学习框架能够识别到本地存在的NVIDIA GPU设备。 ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` #### 下载预训练权重文件 从官方仓库获取预先训练好的YOLOv8网络参数,以便可以直接加载至模型实例中执行预测工作流而无需重新训练整个架构。 ```python import torch model = torch.hub.load('ultralytics/yolov8', 'yolov8s') # 加载小型版YOLOv8模型 ``` #### 调整模型设置以启用GPU支持 确认当前环境中存在可用的GPU后,调整模型属性使其能够在运行期间自动切换到GPU模式下作业,从而显著提升检测效率。 ```python if torch.cuda.is_available(): model.to(torch.device("cuda")) else: print("No CUDA device found.") ``` #### 执行图像或视频帧的目标检测 最后,在准备就绪的数据集上应用上述优化后的YOLOv8模型来进行目标分类与定位分析;同时注意监控程序日志输出中的性能指标变化情况,评估实际效果是否满足预期标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值