【AI4Code最终章】AlphaCode:《Competition-Level Code Generation with AlphaCode》(DeepMind)

AlphaCode是DeepMind的一项研究,通过深度学习生成竞赛级别的代码。它在预训练和微调后,使用Transformer模型进行大量采样、聚类和过滤,以生成高质量解决方案。尽管在代码竞赛中达到中等水平,但采样数量和训练资源对性能有显著影响。论文还探讨了安全性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AlphaCode——宏观上的推荐(DeepMind)

在这里插入图片描述

14位共同一作,74页论文。

认为CodeX只是做了一个简单的 自然语言-程序语言 的翻译任务,AlphaCode要做一个更难的。输入输出为:

方法

流程

在这里插入图片描述

模型训练分为预训练和微调,然后预测阶段先大规模采样(召回)得到一百万,然后聚类和过滤得到1000个(粗排),然后选出10个提交(精排)。

数据集

在这里插入图片描述

先在Github收集开源代码,经过预处理和清洗后715GB,作为预训练数据集;然后用CodeContests 数据集微调,格式如上图。

模型结构

在这里插入图片描述

没有模型图。不同于CodeX的G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值