sklearn 绘制多分类ROC曲线

本文介绍了一个自然语言理解(NLU)模型的评估流程,包括精度、召回率的计算,以及使用ROC-AUC曲线衡量模型在多分类任务上的表现。通过解析测试数据集中的意图识别结果,展示了如何利用sklearn库进行模型性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from rasa_nlu.model import Interpreter
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn import metrics
from sklearn.preprocessing import OneHotEncoder
import json
import time
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import os
from matplotlib import pyplot as plt 
def get_path(root):
    paths = []
    if os.path.isdir(root):
        lists = os.listdir(root)
        for i in lists:
            paths.append(os.path.join(root,i))
    return paths
root = '/app/split_data/test'
paths = get_path(root)
examples = []
for i in paths:
    print(i)
    f = open(i,'r')
    data = json.load(f)
    examples.append(data['rasa_nlu_data']['common_examples'])
    f.close()
interpreter2 = Interpreter.load("./models/nlu/ECS-nlu/models_shuffle/")

result = []
intent = []
ranking = []
for i in examples:
    for item in i:
        rasa_result= interpreter2.parse(item['text'])
        result.append(rasa_result['intent']['name'])
        intent.append(item['intent'])
        ranking.append(rasa_result['intent_ranking'])
'''
for k,v in ecs_test_data.items():
    rasa_res = interpreter2.parse(k)
    result.append(rasa_res['intent']['name'])
    intent.append(v)
    ranking.append(rasa_result['intent_ranking'])
'''
acc_score = precision_score(intent,result,average='weighted')
print('accuracy score:{}'.format(acc_score))
rec_score = recall_score(intent,result,average='weighted')
print('recall score:{}'.format(rec_score))
intent_lists = set(intent)
raw = {}
arrays = []
for i in intent_lists:
    raw[i] = 0
for j in ranking:
    tmp = raw.copy()
    for k in j:
         tmp[k['name']] = k['confidence']
    confs = list(tmp.values())
    arrays.append(confs)
arrays = np.array(arrays)
intent = np.array(intent).T
label = pd.DataFrame(intent,columns = ['label'])
unique = label.ix[:,'label'].unique()
for j in range(len(unique)):
    label.ix[:,'label'] = label.ix[:,'label'].apply(lambda x:j if x == unique[j] else x)
enc = OneHotEncoder()
enc.fit(label)
label_one_hot = enc.transform(label).toarray()
print(metrics.roc_auc_score(label_one_hot,arrays,average='weighted'))

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值