[三十]深度学习Pytorch-图像目标检测Faster RCNN

0. 往期内容

[一]深度学习Pytorch-张量定义与张量创建

[二]深度学习Pytorch-张量的操作:拼接、切分、索引和变换

[三]深度学习Pytorch-张量数学运算

[四]深度学习Pytorch-线性回归

[五]深度学习Pytorch-计算图与动态图机制

[六]深度学习Pytorch-autograd与逻辑回归

[七]深度学习Pytorch-DataLoader与Dataset(含人民币二分类实战)

[八]深度学习Pytorch-图像预处理transforms

[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

[十]深度学习Pytorch-transforms图像操作及自定义方法

[十一]深度学习Pytorch-模型创建与nn.Module

[十二]深度学习Pytorch-模型容器与AlexNet构建

[十三]深度学习Pytorch-卷积层(1D/2D/3D卷积、卷积nn.Conv2d、转置卷积nn.ConvTranspose)

[十四]深度学习Pytorch-池化层、线性层、激活函数层

[十五]深度学习Pytorch-权值初始化

[十六]深度学习Pytorch-18种损失函数loss function

[十七]深度学习Pytorch-优化器Optimizer

[十八]深度学习Pytorch-学习率Learning Rate调整策略

[十九]深度学习Pytorch-可视化工具TensorBoard

[二十]深度学习Pytorch-Hook函数与CAM算法

[二十一]深度学习Pytorch-正则化Regularization之weight decay

[二十二]深度学习Pytorch-正则化Regularization之dropout

[二十三]深度学习Pytorch-批量归一化Batch Normalization

[二十四]深度学习Pytorch-BN、LN(Layer Normalization)、IN(Instance Normalization)、GN(Group Normalization)

[二十五]深度学习Pytorch-模型保存与加载

[二十六]深度学习Pytorch-模型微调Finetune

[二十七]深度学习Pytorch-GPU的使用

[二十八]深度学习Pytorch-图像分类Resnet18

[二十九]深度学习Pytorch-图像分割Unet

[三十]深度学习Pytorch-图像目标检测Faster RCNN

1. 图像目标检测定义

在这里插入图片描述
左上角坐标[x1,y1],右下角坐标[x2,y2]

2. 模型是如何完成目标检测?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
比如特征图中左上角像素对应原图中左上角14*14的区域。

3. 深度学习目标检测模型简介

在这里插入图片描述
在这里插入图片描述
proposal generation输出一个个候选框,默认输出2000个候选框。
backbone是全卷积网络。

在这里插入图片描述
根据自适应池化层将RPN输出的不同shape的框池化成同一shape的输出。

4. Pytorch中的Faster RCNN训练

在这里插入图片描述
在这里插入图片描述
特征图中的一个像素叫锚点,锚点对应原图区域中的框叫锚框,一个锚点可能对应好几个锚框(9个或3个)。一个锚框有四个坐标,所以regressors中的num_anchors需要*4.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 代码示例

detection_demo.py

# -*- coding: utf-8 -*-
"""
# @file name  : detection_demo.py
# @brief      : Faster rcnn实现目标检测
"""

import os
import time
import torch.nn as nn
import torch
import numpy as np
import torchvision.transforms as transforms
import torchvision
from PIL import Image
from matplotlib import pyplot as plt

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# classes_coco
COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


if __name__ == "__main__":

    # path_img
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值