每个人的“大模型”

        

        几乎每个人都在谈人工智能和大语言模型,其实,我们每一个人都拥有一个独一无二的“大语言模型”,就是我们的大脑。我们不妨称它为人类大模型(human LLM),相比而言,人工大模型称为人工智能大模型(AI LLM)。闲下来深入地思考人类大模型和AI 大模型之间的相似性和差别是非常有意思的事情,而且引发我们更深入的思考。

父母给的“基础模型”

     我们从娘胎里一出生,就拥有了一个基本模型(Base Model),这是父母遗传给你的模型。你一出生,大模型就开始工作了,边训练,边推理。它将不断地通过你的五官和感知器官,收集周围环境和身体的内部状况,做出各种行为-哭,笑,眼睛转动和手脚运动(现在被称为推理),同时你的大模型也通过感知环境的状态变化进行学习(现在被称为深度学习),必然认识人,探测声音的方向,抓东西等。

父母的监督式学习

   父母通过不断地对话,唱儿歌和肢体语言对你的大模型进行“微调”,打屁股,怒骂,抚摸和奖励食物是对你大模型的惩罚和奖励。这就是传说中的“长记性”。现在叫做“监督式学习”。

通过教育不断地训练

      当你慢慢地长大,开始上学读书。学校的老师教授你必要的知识,帮助你构建成完整的知识体系和技能。学习的过程好比训练更大人类模型,训练的方式是通过老师自己的人类大模型中知识,以及前人构建的各种大模型中“蒸馏”出特定的知识(现在称为“数据集”)。

       你通过阅读,聆听,实验,背诵等各种方式。使用数据集训练你的大模型。使你的大模型在推理,生成文字,图形方面的能力大幅度地提高。而各种考试都是对你的大模型的评测体系。也许你的大模型达到了大学本科,硕士和博士的能力。

参加工作后,便成了智能体

        当你完成了学业之后,根据你的特长选择一份职业。利用所学的知识(训练好的大模型), 从事某一个工作,相当于提供一种服务和价值。于是,你变成了一个智能体(Agent)。

人类大模型与AI 大模型的相似性

        从人类的大模型和AI大模型的类比中,我们也可以悟出许多道理。

  • 准备训练大模型的数据集(dataset)非常重要

    什么样的训练数据,训练出什么样的大模型。如果数学学的多,数学解题能力就强。小说读的多了,写文章的能力就强。

  • 训练的方法非常重要

  俗话说“名师出高徒”,老师的作用在于:

   选择教学的内容,好的老师知道应该重点教会学生什么,那些知识可以让学生自己以后慢慢学。

   通过特定的方式使学生能够充分理解所教的内容,同样一个知识点,有的老师一点就通,有的老师讲了大半天学生还是一脸懵。这就是教育水平,更是一种艺术。在人工AI 中,这是训练算法。

  • 每个人的大模型都是独一无二的

     我们每个人的大模型都是独一无二的,首先,父母遗传的基础大模型是父母遗传的,由于人类遗传有一定的随机性,所以即便是双胞胎,两个遗传的基础大模型也是有很大的差异的。其次,每个人的生活环境,父母的早期教育都不同,所以,训练我们我们每个人的“大模型”的数据集,训练算法都是不同的。当然,最后训练出来的“大模型”也是不同的。

  • 不必比较大模型的能力

    既然如此,很难比较出一个大模型比另一个大模型更强。未来的AI大语言模型也是如此。每一个大模型都是独特的。解决某一项工作的高手。

  人们抱怨大模型不靠谱,会产生幻觉。其实不用过分严苛和担心。我们人类也会产生幻觉,产生危险的想法。模仿人类思考的AI 大模型自然也会出错。LLM 能够取代人类的某些工作,但是要牢记,在一个系统中最不可靠的是人,AI 与人一样不可靠。

        有时候,人们会将AI 与传统的自动控制混淆。传统的自动控制程序基于了数学和物理原理。他们是可以复现一致的结果。AI 不会取代传统的基于原理和规则的计算机控制算法。

     AI  不是计算机科学的全部,它只是一个分支而已。

  •   人类教育与大模型训练有相似之处

        这两个领域可以相互借鉴。它们的目的十分相似,都是为了培养(训练)一个独特的大模型,因该选择什么数据集去训练目标大模型?除了知识之外,还包括世界观,价值观,道德观。

     如何构建一个基本AI模型,他应该包含多少智慧?并保持中立思想。

       另一方面,我们应该采取效率更高的方式(算法)训练独特的大模型。是否有训练的顺序?像人类教育一样,先学什么,后学什么,由小模型迭代出大模型。未来是否会出现”客户定制“的大模型?如何防止训练者放入“错误”的思想?这都是教育和AI 领域面临的问题。

  发挥人类大模型的优势

   人们担心AI大模型会取代人类的工作。其实,我们应该为自己拥有的人类大模型而感到骄傲。与AI大模型相比,我们的大模型低功耗(每天吃少量的食物),可移动,实时性强,如果AI机器人要能够吵过上海人的话,需要非常强大的算力。

   当我们出现了AI 大模型这样的竞争者之后,人类要考虑在人脑大模型和AI 大模型混合的系统中如何发挥优势。要避开AI大模型擅长的事情,做人类大模型更具有优势的。

    例如,我们写作的方式会发生变化。面面俱到的叙述,洋洋洒洒的文学性描述可能已经没有意义了,人们写作的主要目的是表达自己的思想,观察到的现象以及解决问题的方法。我思故我写。

     与此同时,我们学习的方法也会发生变化,并不是集中在知识的记忆方面,而是构建思维链的能力,深度思考的能力。

    总的来讲,我们不用担心,大模型会抢了我们的饭碗。他最多只会抢夺滥竽充数的人的饭碗。人类的大模型低功耗,实时,可移动,优势明显。 况且,我们的爹妈还可能遗传给我们一个“天才”的基础模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值