Pytorch one of the variables needed for gradient computation has been modified by an inplace

这篇博客讨论了在PyTorch中遇到的RuntimeError,该错误通常由于不恰当的In-Place操作引起,如`a=a`,`a+=b`或循环中的赋值。文章指出,错误`attention_sum+=attention`是问题的源头,并建议避免使用In-Place操作以防止变量版本冲突。此外,还分享了一篇知乎上的优质总结,详细阐述了PyTorch中In-Place操作的相关知识和最佳实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错如下所示:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: 
[torch.FloatTensor [4, 1, 1, 155]], which is output 0 of UnsqueezeBackward0, is at version 1066; expected version 1065 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

造成这个原因主要是代码中有以下几种情况:

  1. a = a
  2. a += b
  3. 循环中 a[i,:,:]=...a[i,:,:]

我报这个错就是因为在代码中写了:

attention_sum += attention

贴一个总结比较好的知乎
关于 pytorch inplace operation, 需要知道的几件事

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值