无感FOC(无位置传感器磁场定向控制)中,无位置传感器算法主要分为两大类:基于反电动势检测和基于电机凸极性检测。这两类算法的核心目标都是通过电机的电气特性间接估算转子位置和转速,但原理、适用场景和实现方式存在显著差异。以下是详细对比分析:
1. 基于反电动势检测的无位置传感器算法
原理
无位置传感器FOC(Field-Oriented Control)技术广泛应用于电机控制领域,如电动汽车、工业伺服、家电(如空调压缩机)等。由于省去了机械位置传感器(如编码器、旋转变压器),系统成本降低,可靠性提高,但同时也带来了转子位置和速度估算的挑战。目前,无位置传感器算法主要分为两大类:
-
基于反电动势检测(Back-EMF Based)
-
基于电机凸极性检测(Saliency Based)
(如图中位置速度传感器)
这两类方法的核心思想都是利用电机的电气特性(反电动势或电感变化)来间接估算转子位置和转速,但它们的适用场景、实现方式及优缺点各不相同。本文将详细分析这两类算法的原理、实现方法、优缺点及典型应用场景,并探讨混合控制策略。
常见方法
-
滑模观测器(SMO, Sliding Mode Observer)
通过构建电流误差的滑模面,强迫观测器输出跟踪实际电流,从滑模控制信号中提取反电动势信息,再通过锁相环(PLL)估算位置。-
优点:鲁棒性强,对参数变化不敏感。
-
缺点:高频抖振问题,低速性能差。
-
(图像来源于知乎大佬玻璃伞)
-
模型参考自适应(MRAS, Model Reference Adaptive System)
-
优点:无需滤波器,动态响应快。
-
缺点:依赖电机参数准确性。
-
-
通过比较电机实际模型和参考模型的输出差异,自适应调整位置估计。
-
扩展卡尔曼滤波(EKF, Extended Kalman Filter)
将电机模型线性化,通过状态估计和噪声滤波输出位置。-
优点:抗噪声能力强,适合动态工况。
-
缺点:计算复杂,需调参。
-
适用场景
-
电机类型:表面式永磁同步电机(SPMSM)或隐极电机(反电动势正弦性好)。
-
速度范围:中高速(通常 >5% 额定转速),低速时反电动势幅值过小难以检测。
2. 基于电机凸极性的无位置传感器算法
原理
凸极性(Saliency)指转子磁路不对称(如内置式永磁电机IPMSM的d/q轴磁阻差异),导致电感随转子位置变化。算法通过注入高频信号(电压或电流)激励电机,利用电感变化检测转子位置。
常见方法
-
高频正弦信号注入(HFI, High-Frequency Injection)
向电机注入高频电压(如1-2 kHz正弦波),通过解调响应电流中的位置依赖分量(如二次谐波)提取位置。-
优点:可在零速和低速下工作。
-
缺点:引入额外噪声,可能引起振动或听觉噪声。
-
-
脉振高频注入(Pulsating HFI)
在d轴注入高频脉振电压,通过q轴电流响应解算位置。-
优点:信噪比高,适合IPMSM。
-
缺点:需精确电机参数。
-
-
方波注入
注入高频方波电压,通过电流响应上升/下降时间差异检测凸极。-
优点:实现简单,计算量小。
-
缺点:对采样精度要求高。
-
适用场景
-
电机类型:内置式永磁电机(IPMSM)或同步磁阻电机(SynRM),凸极性显著。
-
速度范围:零速和低速(0~5%额定转速),中高速时通常切换至反电动势法。