PSO粒子群优化算法

粒子群优化算法(PSO)由Eberhart和Kennedy于1995年提出,灵感来源于鸟群捕食行为。它是一种随机并行的优化算法,适用于高维、多局部极值问题。PSO的优点包括不需要函数可微性和快速收敛,但易陷入局部最优和缺乏精确性。算法通过更新速度和位置寻找最优解。在MATLAB中,通过随机初始化位置和速度,计算适应度并迭代更新,直至达到预设精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1算法简介

粒子群优化算法,在1995年由Eberhart博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。算法流程图如下所示。

粒子群优化算法流程图

核心公式( 更新速度和位置):
在这里插入图片描述
在这里插入图片描述
这里   w \ w  w称为惯性因子,   C 1 \ C1  C1   C 2 \ C2  C2 称为加速常数,一般取   [ 0 , 4 ] \ [0,4]  [0,4]   P i d \ Pid  Pid 表示第   i \ i  i 个变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值