【GEO Database - 2】sva-ComBat函数去除批次效应

本文介绍了如何通过 Combat 方法处理并消除高通量数据中的批次效应,以确保不同批次样本间的可比性。在详细阐述批次效应概念和去除原因之后,展示了具体的操作步骤,包括数据读入、合并、批次信息处理以及使用 R 语言中的 sva 包进行 Combat 处理。最后,通过 HeatMap 和 PCA 分析展示了批次校正前后的显著差异,证明了 Combat 方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是批次效应(batch effect)

芯片批次效应是在处理过程中由于技术原因(非生物因素)而添加到样本中的变异。
1、包括使用的扩增试剂的批次,测定完成的时间,甚至大气臭氧水平。如样本制备中的系统变化,扫描仪的差异。
2、还有就是用道不同平台(Illumina/affymetrix)的芯片数据做分析的时候。

二、为什么要去除批次效应?

其他潜在的批次效应在长期研究和meta分析中往往是不可避免的。
标准化虽然可以调整各个样本的测量的全局属性,从而可以更加适当地进行比较。但是,标准化不会消除批次效应。在某些情况下,这些标准化程序甚至可能在高通量测量中加剧技术人为因素。
所以,在处理不同批次的样本时我们需要去除批次效应。

三、处理过程

1、环境搭建

setwd("C:/Users/Administrator/Desktop/lab4-combat-PCA-st/data")
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("sva")
library("sva")

2、读入已标准化过的数据

标准化处理详见用Bionconductor的affy包处理.cel文件

GSE32676 <- read.table("GSE32676_rma_symbol.txt",header=T,row.names=1,sep="\t")
GSE41368 <- read.table
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值