
sklearn的一般流程
文章平均质量分 87
carry_1024
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【sklearn的一般流程】sklearn的一般流程,以鸢尾花分类为例
【机器学习个人笔记】sklearn的一般流程,以鸢尾花分类为例1. 数据的获取2. 数据预处理特征缩放切割训练集和测试集3.训练模型4.模型的评估查看参数 get_params()查看模型评分 score(X_test, y_test)查看分类模型的评分报告 classification_report()用交叉验证评分 cross_val_score5.模型的优化 1. 数据的获取 sklearn...原创 2018-12-17 17:54:49 · 2268 阅读 · 1 评论 -
【sklearn的一般流程】数据的获取
【sklearn的一般流程】数据的获取1.生成回归数据 make_regression()2.生成分类数据 make_classification()3. 生成二维线性不可分的数据集 make_circles()4. 生成用于聚类的数据集 make_blobs() 1.生成回归数据 make_regression() from sklearn.datasets import mak...原创 2018-12-18 10:39:08 · 1246 阅读 · 1 评论 -
【机器学习个人笔记】scikit-learn的四种特征缩放方式
【机器学习个人笔记】scikit-learn的三种特征缩放方式 在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提高算法的收敛速度。 特征缩放还可以使机器学习算法工作的更好。比如在K近邻算法中,分类器主要是计算两点之间的欧几里得距离,如果一个特征比其它的...原创 2018-12-17 16:42:36 · 2104 阅读 · 1 评论 -
【机器学习个人笔记】用sklearn实现特征正则化Regularization
【机器学习个人笔记】用sklearn实现特征正则化 我们在学习机器学习的时候会经常听到正则化(Regularization),其一般是用于改善或者减少过度拟合问题。 下图是一个回归问题的例子: 第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一 个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看 出,若给出一个新的值使之预测,它将表现的很差...原创 2018-12-20 16:45:05 · 2558 阅读 · 1 评论