因为以前用过LMDeploy,所以本章的内容相对熟悉。
另外,因为教程写的很详细保姆级,所以大多数情况直接复制执行命令即可。开发机的创建略过。
总体验证结论:
- LMDeploy的模型加载有点慢,但推理速度快,符合预期
- 新一代视觉-语言多模态大模型InternVL2-2B模型的能力出乎意料的好,作为2B参数模型相当出色
- Streamlit和Gradio简单高效,配合LLM运用做原型开发很合适,LMDeploy内置支持Gradio
Python环境的准备
在 /root/share/pre_envs
中配置好了预置环境 icamp3_demo
可以通过如下指令进行激活:
conda activate /root/share/pre_envs/icamp3_demo
Cli Demo 部署 InternLM2-Chat-1.8B 模型
首先,创建一个目录,用于存放我们的代码。并创建一个 cli_demo.py
。
mkdir -p /root/demo
touch /root/demo/cli_demo.py
然后,我们将下面的代码复制到 cli_demo.py
中。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实