算法5_动态规划

最长公共子序列

若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。

给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
1.最长公共子序列的结构
设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则

若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。
若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。
若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。
最长公共子序列问题具有最优子结构性质。
2.子问题的递归结构
由最长公共子序列问题的最优子结构性质可知,要找出X和Y的最长公共子序列,可按以下方式递归地进行:

当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者为X和Y的一个最长公共子序列。

用c[i][j]记录序列和的最长公共子序列的长度。

Xi={x1,x2,…,xi};Yj={y1,y2,…,yj}。
当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时C[i][j]=0。
其它情况下,由最优子结构性质可建立递归关系如下:
3.计算最优值

#define NUM 100
int c[NUM][NUM];
int b[NUM][NUM];
void LCSLength (int m, int n, const char x[],char y[])
{  
  int i,j;
  //数组c的第0行、第0列置0
  for (i = 1; i <= m; i++) c[i][0] = 0;
  for (i = 1; i <= n; i++) c[0][i] = 0;
  //根据递推公式构造数组c
  for (i = 1; i <= m; i++)
  for (j = 1; j <= n; j++)
  {
	if (x[i]==y[j]) 
	  {c[i][j]=c[i-1][j-1]+1; b[i][j]=1; }		//↖
	else if (c[i-1][j]>=c[i][j-1]) 
		{c[i][j]=c[i-1][j]; b[i][j]=2; }		//↑
	else { c[i][j]=c[i][j-1]; b[i][j]=3; }			//←
  }
}

4.构造最长公共子序列

void LCS(int i,int j,char x[])
{
	if (i ==0 || j==0) return;
	if (b[i][j]== 1){ LCS(i-1,j-1,x);  cout<<x[i]; }
	else if (b[i][j]== 2) LCS(i-1,j,x);
	else LCS(i,j-1,x);
}

最大子段和

给定由n个整数(包含负整数)组成的序列a1,a2,…,an,求该序列子段和的最大值。
当所有整数均为负值时定义其最大子段和为0。
算法

#define NUM 1001
int a[NUM];
int MaxSum(int n)
{
	int sum=0; 
	int b=0;
	for (int i=1;i<=n;i++)
	{
		if (b>0) b+=a[i]; else b=a[i];
		if (b>sum) sum=b;
	}
	return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值